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Phase defects and spatiotemporal disorder in traveling-wave convection patterns
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Spatiotemporal disorder is studied in traveling-wave convection in ethanol-water mixtures. Spectral mea-
sures of disorder, linear correlation functions, and mutual information are used to characterize the patterns, and
are found to give a weak indication of the level of disorder. The calculation of the complex order parameter for
experimental patterns is described. It is found that the ordering of the patterns is accompanied by a dramatic
change in the topological structure of the order parameter. Specific arrangements of defects are found to be
associated with the elements of traveling-wave patterns, and the net charge and total number of defects is
introduced as a measure of disorder in the patterns. The coarsening of the patterns is marked by an accumu-
lation of net charge and a dramatic decrease in the number of defects. The physical significance of the defects
is discussed, and it is shown that the phase velocity of the waves is lower in the vicinity of the defects. The
defect-defect correlation functions are calculated for the convection patterns. It is shown that the ordering of
the patterns is closely related to the apparent defect-defect interactions.@S1063-651X~97!01809-6#

PACS number~s!: 47.54.1r, 47.27.Te, 47.52.1j
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I. INTRODUCTION

In a spatially extended system which is driven far fro
equilibrium, a change in the strength of the forcing para
eter or in the other physical parameters can cause an init
homogeneous system to become unstable to a spatial m
lation @1#. The resulting breaking of translational symmet
and formation of a pattern can be an important influence
the physical properties of the system, such as energy, m
rial, or momentum transport. Examples are as diverse as
formation of convection rolls in a fluid layer heated fro
below @2#, the formation of chemical waves in a reactio
diffusion system@3# the self-organization of a colony o
amoeba@4,5#, or the excitation of transverse spatial structu
in a large aperture laser@6–8#.

Whereas patterns in equilibrium systems are constra
by a free-energy minimization principle and typically exhib
relaxational dynamics, patterns in nonequilibrium syste
are free from this constraint and can exhibit complica
nonrelaxational dynamics. Under some circumstances,
ticularly when driven only slightly beyond their primary in
stabilities, patterns in nonequilibrium systems can be hig
ordered, consisting of a regular pattern with a small num
of defects. Under these circumstances, it is often the case
the patterns are universal and are determined by the sym
tries of the system@1#. When driven farther beyond the
primary instabilities, nonequilibrium systems often exhi
spatiotemporal disorder, in which the physical variables v
in time and space in a complicated manner. In some syste
this spatiotemporal disorder takes the form of the com
cated evolution of an amplitude field, and the behavior of
system is naturally described in terms of the dynamics of
field @9–11#. In other cases, coherent structures or defect
the pattern appear to take a primary role, and a descriptio
the system can be made in terms of the dynamics and in
actions of these structures@12–14#.

A variety of mathematical models have been introduc
to describe patterns and spatiotemporal chaos in physic
extended nonequilibrium systems. These include mod
561063-651X/97/56~5!/5351~16!/$10.00
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which exhibit amplitude chaos@15,16# as well as defect-
mediated chaos@6,17,18#. In the latter case, the statistics o
phase defects have been used as an indicator of disord
chaotic patterns@19#. It has also been found that the top
logical structure of the defects can place significant c
straints on the properties of the patterns@20#. While it would
be interesting to apply these ideas to the analysis of exp
mental systems, it is difficult to develop robust and accur
algorithms for locating defects in experimental patterns.

In this paper, we present a study of traveling-wave co
vection in a mixture of ethanol and water. We describe
transition from a pattern exhibiting intense defect-media
disorder to a highly ordered pattern consisting of large
mains of traveling waves separated by domain boundar
We find that the spectral properties and amplitude corre
tions of the patterns give a weak indication of disorder in
patterns. By calculating the complex order parameter of
convection pattern, we show that it is possible to identify a
track the trajectories of phase defects in the convection
terns with high accuracy. The statistics and dynamics
these defects are found to be a much more effective mea
of disorder in the patterns. We calculate the defect-de
correlation functions and show that, to some extent,
coarsening of the pattern can be understood in terms of
dynamics and interactions of the defects.

II. CONVECTION IN ETHANOL-WATER MIXTURES

Rayleigh-Bénard convection in a mixture of ethanol an
water is an example of double diffusive convection. In th
system, there are two quantities—heat and etha
concentration—which induce density fluctuations and c
drive the convective flow. A thin layer of fluid, having ave
age ethanol concentrationc, is confined between two plate
separated by a distanceh. The plates are impenetrable t
both components of the fluid and have a much larger ther
conductivity than that of the fluid mixture. The dimensio
less forcing parameter is the Rayleigh number
5351 © 1997 The American Physical Society
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Ra5
gah3DT

nk
, ~1!

where g is the acceleration of gravity,n is the kinematic
viscosity,k is the thermal diffusion coefficient,a is the ther-
mal expansion coefficient, andDT is the temperature differ
ence imposed on the fluid layer. Ethanol-water mixtures
distinguished by having a strong Soret effect. The transp
of ethanol concentration in the mixture is given by

j c52Dc“c1DcStc~12c!“T1uc, ~2!

wherej c is the ethanol concentration flux,u is the fluid ve-
locity, Dc is the ethanol diffusivity andSt is the Soret coef-
ficient @21,22#. The first and third terms on the right side
Eq. ~2! are the diffusion and advection terms, but the seco
term is a cross-diffusion term, and indicates that a conc
tration flux arises from a temperature gradient. Below on
u50, and, when a temperature difference is applied to
fluid layer, the concentration gradient builds up until a stea
state is reached for whichj c50.

Above the onset, the convective flow transports both h
and ethanol concentration, resulting in a complicated in
play of the temperature, concentration, and velocity fiel
The coupling between the thermal and concentration den
gradients is the separation ratio

c52Stc~12c!
b

a
, ~3!

whereb5r21(]r/]c)T is the concentration expansion coe
ficient. A negative value ofc indicates that the concentratio
density gradient opposes the thermal density gradient,
tends to stabilize the fluid layer against thermal convecti

The nature of the quiescent state is specified by Ra
c, but the onset and the dynamical properties of convec
also depend on the relationships between the relevant d
sive time scales in the system. The Prandtl num
Pr5n/k relates momentum diffusion to heat diffusion, a
influences the onset of secondary instabilities. The Le
numberL5Dc /k relates concentration diffusion to heat d
fusion, and is important in determining the onset and dyna
ics of the convective state. For smallL and sufficiently nega-
tive values of c, the onset of convection is a Hop
bifurcation to a state of oscillatory convection in which t
convection rolls rock back and forth, rather than overtu
steadily@23–25#.

The experiments described in this paper were perform
in a mixture of 8% ethanol~by weight! in water at an average
temperature of 26 °C, for whichc520.24, Pr512, and
L51022 @26#. A schematic bifurcation diagram for this mix
ture is shown in Fig. 1. Because of the large negative va
of c and the strong separation of time scales for mass
thermal diffusion in this mixture, the Hopf bifurcation a
r co is strongly subcritical and the amplitude of the oscillato
convection grows until large-amplitude traveling-wave~TW!
convection is triggered. In the TW state, the convection ro
overturn continuously, but propagate at a well-defined ph
velocity @27–29#. TW convection has been widely studied
a model of strongly nonlinear wave propagation, in whi
superpositions of wave components are unstable.
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If the Rayleigh number is increased further after TW co
vection has been initiated, the phase velocity of the TW st
decreases until a transition to stationary overturning conv
tion is reached atr ! @30,31#. If the Rayleigh number is de-
creased, the phase velocity increases and TW convection
mains stable until a saddle node bifurcation is reached
r s . At this point, the finite amplitude convection sta
abruptly disappears. The measured values for the bifurca
points in the 8% mixture used here arer co51.40, r s51.23,
and r !51.58.

Patterns were studied in a cylindrical convection cell ha
ing a diameter of 21 cm and a height of 0.4 cm, with
aspect ratioG5r /h of 26. The patterns are visualized using
white-light shadowgraph and recorded using a CCD cam
and computer frame grabber. The results described below
expressed in terms of the characteristic time and dista
scales of the system; distances are expressed in terms o
cell heighth50.4 cm, which sets the size of a convectio
roll, and times are expressed in terms of the vertical therm
diffusion timet[h2/k5124 s. A description of the appara
tus, as well as a survey of TW patterns in this system,
been published elsewhere@32#.

III. DISORDER IN TW CONVECTION

In order to create a maximally disordered convection p
tern, the Rayleigh number is rapidly increased from zero t
value of about 2.2, then quickly set to a value of 1.25 wh
the onset of convection is observed. This shock to the s
tem, represented by the gray arrow in Fig. 1, produces
extremely disordered pattern which is composed of super
sitions of wave components and small domains of travelin
waves. Such a pattern is shown in Fig. 2~a!. Eventually, a
highly ordered convection pattern forms in the cylindric
convection cell consisting of several large domains of tra
eling waves separated by slowly moving, well-defined d
main boundaries. The ordered patterns always exhibit glo
rotation, with the rolls in all domains moving around th
boundary of the convection cell in the same direction@32#.
The direction of rotation varies from run to run, but, onc

FIG. 1. Schematic bifurcation diagram for convection in a pu
fluid and in a binary mixture with negative separation ratio. In t
mixture, the heavy solid line indicates traveling-wave~TW! con-
vection, and the heavy dashed line indicates stationary overturn
~SOC! convection. Disordered states are initiated via the transi
indicated by the gray arrow.
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56 5353PHASE DEFECTS AND SPATIOTEMPORAL DISORDER . . .
established, never reverses itself. A typical ordered patte
shown in Fig. 2~b!.

The spatial Fourier spectra of the patterns in Figs. 2~a!
and 2~b! are shown in Figs. 2~c! and 2~d!. Both spectra have
a characteristic ring shape, with the spectral energy con
trated atuku'p. On a fine scale, the spectrum of the diso
dered pattern has a granular appearance, whereas the
trum of the ordered pattern is smoother and has a ban
structure. On a coarser scale, the spectra are quite simila
exhibit a similar dependence onuku. In Figs. 2~e! and 2~f!,
the spatial autocorrelation functions are shown for the dis
dered and ordered patterns. The correlation functions b
show a target pattern, which is typical for quasiperiodic i
ages. The correlation function for the disordered pattern
nearly isotropic, whereas the correlation function for the
dered pattern exhibits clear anisotropy. This is because
correlation is stronger for displacement directions cor
sponding to the roll orientations in the large TW domains
the ordered pattern.

The coarsening of the convection pattern is accompan
by subtle changes in the spatial Fourier spectrum and
autocorrelation function, but these changes are less
nounced and no easier to quantify than the change in
pattern itself. An important issue is whether a simple sca

FIG. 2. ~a! A TW convection pattern recorded atr 51.27, ap-
proximately 50t after convection, was initiated by the procedu
described in the text.~b! The pattern recorded 1950t after convec-
tion was initiated.~c! The spatial Fourier transform of~a!. ~d! The
spatial Fourier transform of~b!. ~e! The autocorrelation function o
~a!. ~f! The autocorrelation function of~b!.
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measure of the disorder can be found. As a first step in
direction, the two-dimensional spectral distribution can
reduced to a function ofuku, by integrating out the angula
dependence using

S~k!5
1

2pE0

2p

P~k cosu,k sinu!du, ~4!

whereP(kx ,ky) is the power spectrum andS(k) is called the
structure function@11,13,33#.

The structure functions calculated from the power spec
in Figs. 2~c! and 2~d! are shown in Fig. 3, where the norma
ization of S(k) is arbitrary, but the same for both pattern
Fig. 3 reveals an increase in intensity and a slight sharpen
of the wave number distribution as the pattern becomes
dered. A reasonable strategy is to evaluate the moment
the structure function as a measure of the level of disorde
the pattern. As will be discussed below, only a slight chan
in these moments is observed during the ordering of the
tern.

The angular dependence of the autocorrelation func
can also be integrated out to obtain a radial correlation
tribution,

C~r !5
1

2pE0

2p

C~r cosu,r sinu!du, ~5!

whereC(x,y) is the spatial correlation function. The leng
of the tail of the correlation function, or more practically, th
height of thenth maximum~with n.1) may be used as a
indicator of long-range order in the pattern. The radial c
relation function, shown in Fig. 4, indicates a small increa
in long-range order as the large domains form.

Having established that the structure function and rad
autocorrelation functions are modified by the ordering of
patterns, we can use these quantities to track the coarse
of the pattern. The evolution of the pattern was recorded
5400 video frames, over a period of 1960t, and the Fourier
transforms and correlation functions were calculated fr
each frame. In Fig. 5, the mean and standard deviation of
structure functionS(k) and the value of the third maximum
of the radial correlation function,C(r ), are plotted as a func

FIG. 3. Plot of the structure function,S(k), of data shown in
Figs. 2~c! ~solid curve! and 2~d! ~dotted curve!. The wave number is
in units of the inverse cell heighth21.
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5354 56A. La PORTA AND C. M. SURKO
FIG. 4. Plot of the radial distribution,C(r ), of the autocorrela-
tion functions in Figs. 2~e! ~solid curve! and 2~f! ~dotted curve! with
the angular dependence integrated out. Distances are in terms
cell heighth.

FIG. 5. The time series of the spectral measures of disorde
the TW convection pattern shown in Fig. 2.~a! The mean value of
the structure function distribution.~b! The standard deviation of th
structure function distribution.~c! The value of the third maximum
of the radial autocorrelation function. The wave number is in un
of the inverse cell height,h21, and time is in units of the vertica
thermal diffusion time,t.
tion of time. Fluctuations of62% are found in the mean
wave number of the pattern, but no clear trend is evide
The width of the wave number distribution@Fig. 5~b!# nar-
rows slightly, from 0.30 to 0.25, and the value of the rad
correlation function~at a distance of'6h or '3l) in-
creases from 0.045 to 0.062@Fig. 5~c!#, a change which is
comparable to the noise in this measure.

To summarize the results of this section, the transit
from disorder to order in the TW convection patterns is a
companied by discernible changes in the spectral distribu
and the correlation amplitude of the patterns, but the chan
in these measures are surprisingly weak in view of the d
matic change in the pattern between Figs. 2~a! and 2~b!.
Such a signal could easily be produced by a much less
matic change in the pattern, such as a slight variation of
wave number within the large roll domains. It can be co
cluded that the patterns in Figs. 2~a! and 2~b! contain a con-
tinuum of spectral components concentrated atuku'p and
spanning a continuous spectrum of angles. In the disorde
patterns, the individual spectral components span the en
pattern and overlap with each other, whereas in the orde
patterns, they are segregated in well-defined domains.
small changes in the measures in Fig. 5 are a side ef
rather than a direct result, of this qualitative change in
nature of the patterns.

The fact that the coarsening of the patterns is not reflec
in the spectral properties of the system can also be in
preted as a failure of the linear paradigm in the analysis
we interpret the pattern as arising from a PDE, the spec
components are independent if the nonlinear terms are
glected. In this case, the spectrum would tend to be exc
according to the growth rates of the linearized system
the phases would be random. The tendency of the patter
order itself, by partitioning itself into domains of travelin
waves, is a manifestation of the coupling between these s
tral components, which must arise from nonlinearities in
system. The ordering of the pattern then manifests itsel
the development of complicated phase relationships am
the Fourier components, rather than in the spectral am
tudes.

IV. AVERAGE MUTUAL INFORMATION

In the dynamical systems literature, the use of the co
lation function is sometimes criticized because it measu
only linear correlations between variables and igno
higher-order correlations. In view of the discussion above
is not clear that linear correlations are the most appropr
measure of disorder in the TW patterns. Instead of look
for linear correlations in the images, we can ask a m
general question: is the probability distribution for the inte
sity at a point in the image altered by the prior measurem
of the intensity at a neighboring point?

Let us label the two variablesA andB and their possible
valuesaj andbk . ~As applied to the patterns we are stud
ing, A andB are the measurements of the pattern intensity
two points separated by a certain distance.! An expression
for the amount of mutual information between these t
measurements in terms of their joint probability distributi
was derived by Shannon and Weaver@34#. The mutual infor-
mation~in bits! between measurementsaj andbk is given by

the
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56 5355PHASE DEFECTS AND SPATIOTEMPORAL DISORDER . . .
I AB~aj ,bk!5 log2F PAB~aj ,bk!

PA~aj !PB~bj !
G , ~6!

wherePA(a) andPB(b) are the probability distributions fo
A andB andPAB(a,b) is the joint probability distribution. If
the two variables are independent, the measurement o
first variable gives no information about the second varia
and the mutual information is zero. In this case, the jo
probability distribution is of the form

PAB~a,b![PA~a!PB~b!, ~7!

and evaluation of Eq.~6! gives

I AB~a,b![0, ~8!

as expected. If two measurements,ai and bk , are totally
correlated andai is measured, then the subsequent meas
ment ofbk gives no additional information. In this case th
mutual information is large and, as expected, Eq.~6! attains
its maximum value, which is of order log2n, wheren is the
number of possible outcomes ofA or B.

Order in a spatial pattern can be evaluated by determin
how much information is obtained, on average, about a gi
pixel by measuring the value of a pixel which is offset by
certain distance@35,36#. This average mutual information i
determined by evaluating

I ~x,y!5(
j ,k

I AB~aj ,bk!PAB~aj ,bk!, ~9!

where the summation is over all possible values of the p
intensitiesA and B. In evaluating Eqs.~6! and ~9!, PA and
PB are the probability distribution for the pixel intensity
averaged over the image, andPAB is the joint probability
distribution compiled from all pairs of pixels which are sep
rated by the distance (x,y). In this context, Eq.~9! may be
interpreted as a generalization of the linear correlation fu
tion, which, in terms of the joint probability distribution, is

C~x,y!5
1

sasb
(
j ,k

ajbkPAB~aj ,bk!, ~10!

wheresa andsb are the standard deviations of the two va
ables. The functionI AB(aj ,bk) replaces for the factorajbk
which appears in the linear correlation function.

The average pixel-pixel mutual information function f
the images in Figs. 2~a! and 2~b! is shown in Fig. 6. The
mutual information map is a target pattern and is qual
tively similar to the autocorrelation function, Figs. 2~c! and
2~d!. The angular dependence of the mutual informat
function may be integrated out to obtain a radial distribut
of mutual information, which is shown in Fig. 7. The resu
using mutual information seem qualitatively similar to tho
obtained from the linear correlation function, with the o
dered patterns exhibiting an enhancement of mutual infor
tion at larger distances. The contrast between the ordered
disordered patterns seems to be somewhat more pronou
in the mutual information, indicating that it is a more sen
tive measure of spatial disorder in the patterns studied h
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V. COMPLEX ORDER PARAMETER
AND PHASE DEFECTS

In the previous sections, the level of spatial disorder in
convection patterns was measured in terms of the spe
content and in terms of two different measures of long-ran
order~linear correlation and mutual information!. The order-
ing of the pattern is associated with a discernible change
these measures, shown in Figs. 3, 4, and 7; however, t
measures do not appear to capture the essence of the c
ening process. In previous work, we have shown how
complex order parameter may be calculated in the TW p
terns @32#, and in this section we show that the level
disorder in the patterns can be described very effectively
terms of the topological structure of the order parameter

A. Identification of phase defects

In the traveling-wave patterns observed in this expe
ment, the time series of each pixel in the video sequenc
oscillatory, and the pattern can therefore be described a
ensemble of oscillators, one for each pixel. Taking this vie
the specification of the pattern at a given time consists of
complex amplitude~modulus and phase! and oscillation fre-
quency of each pixel. The modulus of the complex amplitu
varies slowly in space and time and so the structure of
pattern is determined mainly by the phase relationships

FIG. 6. Average pixel-pixel mutual information as a function
displacement for the patterns of Figs. 2~a! and 2~b!. Black indicates
zero mutual information, and white indicates maximum mutual
formation.

FIG. 7. Radial distribution of the mutual information from th
data in Figs. 6~a! ~solid curve! and 6~b! ~dotted curve!.
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5356 56A. La PORTA AND C. M. SURKO
tween the pixels comprising the pattern. The rate of cha
of the pattern is closely related to the frequency field@32#.

The complex amplitude and frequency fields can be c
culated from the oscillatory pattern data by performing
complex demodulation of the time series of each pi
@37,38#. It is assumed that the time series of each pix
a(x,t), has a narrow Fourier spectrum, centered atv, and
can be written in the form

a~x,t !5av~x,t !cos@vt1f~x,t !#, ~11!

where av(t) is the envelope andf(t) represents a phas
modulation with respect to the carrier frequencyv. Given
the time sequence for each pixel, our goal is to calculate
two unknown functionsav(x,t) andf(x,t). The latter func-
tion is particularly important. When evaluated at a giv
time t0, it indicates the relative phases of the oscillators r
resenting the pattern at that time.

The functionsaw(x,t) and f(x,t) are calculated as fol
lows. The data sequence is first multiplied by a carrier wa
eivt, wherev is chosen to match the observed spectral p
in the data. Dropping the explicit dependence onx from our
notation, the transformed time series,A8(t), is

A8~ t !5a~ t !eivt5av~ t !cos@vt1f~ t !#~cosvt1 i sinvt !

5
av~ t !

2
$cos@2vt1f~ t !#1cos@f~ t !#

1 i sin@2vt1f~ t !#2 i sin@f~ t !#%. ~12!

A low-pass filter is then applied to eliminate compone
with frequency greater thanv, leaving the near-dc term
cos@f(t)# and sin@f(t)#. The resulting demodulated time s
riesA(t) is

A~ t !5
av~ t !

2
$cos@f~ t !#2 i sin@f~ t !#%

5
av~ t !

2
e2 if~ t !. ~13!

Examination of Eq.~13! reveals that the modulus ofA(t) is
the envelope functionav(t) and that the complex phase o
A(t) is the phase modulation of the original data,f(t).

Although the experimental pattern is explicitly a real va
ued function~i.e., the intensity of the image as a function
time and space! it is convenient to consider it to be the re
part of a complex order parameter,A(x,t), defined by

a~x,t !5Re@A~x,t !eivt#

5Re@A~x,t !#, ~14!

where Re indicates the real part. The time derivative of
pattern is then given by

d

dt
a~x,t !'Re@ ivA~x,t !eivt#, ~15!

where in taking the derivative, it has been assumed
A(x,t) varies slowly with time. In the TW patterns, the~un-
seen! imaginary part of the order parameter has a defin
e
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meaning, since it is closely related to the time derivative
the pattern and indicates the local direction of propagation
the waves. This complex field is closely related to the co
plex order parameter described by the complex Ginzbu
Landau equation, in which the temporal oscillation of t
pattern corresponds to the rotation of the amplitude in
complex plane, and the spatial derivatives in the equa
express the coupling between neighboring oscillators.

Within a domain of traveling waves, the complex ord
parameter is of the form

A~x,t !5A0ei [k•x2vt] , ~16!

where v is the oscillation frequency, and the wave vect
k points in the direction of propagation. In this case, t
phase of the order parameter is smooth and well defi
everywhere. However, at a boundary between domains
traveling waves, there is an interface between regions w
different wave vectors, and it is impossible for the two fiel
to connect smoothly. One example of such a domain bou
ary, observed in TW convection, is a configuration called
‘‘zipper.’’ In a zipper, the rolls on either side of the doma
boundary are perpendicular to the boundary, but propaga
opposite directions, in a configuration reminiscent of a sh
flow @32,39,40#. The complex order parameter of the patte
near the boundary is a superposition of two wave com
nents of the form

A~x,t !5a1~x!ei ~ky2vt !1a2~x!ei ~2ky2vt !, ~17!

where a1 and a2 are the envelopes of the waves, and t
zipper is aligned along thex axis. Measurements indicat
that the envelopes consist of a smooth crossover from
component to the other, where the cutoff distance is of
order of the pattern wavelength@41#, as sketched in Fig. 8~a!.
Using Eq.~17! with this form fora1 anda2, it can easily be
shown that the complex amplitude is equal to zero at a se
of points with coordinates

x50, y5
p

2k
,
3p

2k
,
5p

2k
, . . . , ~18!

where the origin ofx is defined such thata15a2 at x50. At
these points, called phase defects, the contours
Re(A)50 and Im(A)50 intersect, and the phase of th
complex amplitude is undefined. The phase contours a
zipper boundary are illustrated in Fig. 8~b!. Writing the
phase of the complex amplitude asf, the integral ofdf on

FIG. 8. ~a! A sketch of the envelope functions which appear
Eq. ~17!. ~b! The phase contours near a zipper boundary, where
arrows indicate the direction of propagation.
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56 5357PHASE DEFECTS AND SPATIOTEMPORAL DISORDER . . .
a closed path enclosing a defect is equal to 2pn, wheren is
defined as the topological charge of the defect@42#.

Figure 9~a! shows a high-resolution image of the compl
order parameter calculated from a TW convection patt
containing a zipper boundary. Waves are moving upward
the left side of the boundary, and downward on the right s
of the boundary. Several phase defects appear along the
ter line of the boundary. The circular arrow surrounding o
defect indicates a path over which a 2p phase shift is accu
mulated, indicating that a defect of unity charge is contain
therein. Contours of Re(A)50 and Im(A)50 are shown in
Fig. 9~b!, and are found to cross at the phase defects. Th
fore, a zipper boundary manifests itself in the order para
eter of the experimental patterns as a row of phase def
having the same unit topological charge and separated
distance ofp/k ~half the pattern wavelength!.

The results are similar for the case of a perpendicu
boundary, for which

A~x,t !5a1~y!ei ~2ky2vt !1a2~y!ei ~2kx2vt !. ~19!

In this case, a row of phase defects is obtained, but space
a distance 2p/k, which is equal to the pattern wavelengt
~In both the zipper and perpendicular boundaries, the num
of defects is equal to the number of roll pairs which term
nate at the domain boundary.! A closeup of a perpendicula
boundary, in which rolls move downward from the top of t
image and leftward along the bottom of the image, is sho
in Fig. 10.

FIG. 9. Phase of the complex amplitude in a closeup view o
zipper taken from experimental data.~a! The phase (0→2p) is
mapped to gray scale~white→black!. A 2p phase shift is accumu
lated around the circular arc shown.~b! Contours of Re(A)50 and
Im(A)50, indicated by solid and dashed lines, intersect at
phase defects.

FIG. 10. Phase of the complex amplitude in a closeup view o
perpendicular boundary, as in Fig. 9.
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We have identified two other structures which common
appear in the TW convection patterns. The first is the sim
dislocation, shown in Fig. 11, in which a single defect mar
the termination of a roll. The second is the alternati
‘‘cross-roll’’ pattern @43#, in which two mutually perpen-
dicular standing waves alternate in time.~An instability
somewhat similar to this occurs in stationary convection,
which a region of long-wavelength rolls becomes unstable
a set of perpendicular rolls with a shorter wavelength,
discussed in Ref.@2#!. The complex amplitude of the cross
roll pattern is of the form

A~x,t !5a1~x,t !ei ~kx2vt !1a2~x,t !ei ~2kx2vt !

1a3~x,t !ei ~ky2vt !2a4~x,t !ei ~2ky2vt !, ~20!

where the envelopesan(x,y,t) are nominally equal, but fluc-
tuate in time and space. The time development of this fiel
shown in Fig. 12. Figure 13 shows data for an alternat
cross-roll patch which is quite uniform on the upper-left si
and merges into a domain of traveling waves toward
lower right. As may be determined from Eq.~20!, or ob-
served in Fig. 13, the cross-roll area contains alterna
positive and negative defects on a square lattice with a lat
constant equal top/k. The net charge of the cross-roll stru
ture is therefore zero, although there are (k/p)2 defects per
unit area@44#.

Given that specific structures in TW convection patte
are predicted to be marked by specific configurations of
fects, and that the complex order parameter calculated f
experimental patterns exhibits these structures, it is usefu
design an algorithm that can automatically identify defects
the convection patterns with maximum efficiency and re
lution. Figure 14 is a schematic diagram of the structure o

a

e

a

FIG. 11. Phase of the complex amplitude in a closeup view o
dislocation, as in Fig. 9.

FIG. 12. Illustration of the temporal development of an altern
ing cross-roll pattern. The four panels are obtained by evalua
Eq. ~20! with uniform and equalan at t5p/4v, p/2v, 3p/4v, and
p/v.
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5358 56A. La PORTA AND C. M. SURKO
phase defect. In principle, a phase defect may be identifi
by integrating the phasedf on a closed loop and checking
for nonzero topological charge. In practice, the complex a
plitude calculated from an experimental pattern is not co
tinuous, but consists of values sampled on a discrete latt
of pixels, as illustrated schematically in Fig. 14~b!. It is
therefore not possible to calculate the topological char
from a discrete lattice with absolute certainty.

If we assume, for example, that for a circular integratio
path the phase of the complex amplitude varies with t
polar angle as shown by the solid curve in Fig. 15~which
represents a topological charge of unity!, then the values
sampled on a discrete representation of the field@illustrated
in Fig. 14~b!# would be represented by the gray circles on th
curve in Fig. 15. However, the discrete representation of t
dashed phase curve in Fig. 15 would be indistinguishab
from the representation of the solid curve, despite the fa
that the dashed curve represents a topological charge of z
rather than unity. The trouble is that as we walk around t
lattice and accumulate the total phase for the loop, there is
ambiguity, modulo 2p, as to the value of the phase incre
ment on each step. The most natural assumption is to cho
the phase increment with the smallest absolute value on e
step~so 2p,Df,p).

In practice, the calculation of the topological charge
reliable as long as the typical phase difference between
jacent pixels is well belowp. In order to satisfy this condi-
tion, the image sampling resolution must be high compar
with the wave number of the pattern, and the number of ste
in the loop must be sufficiently high to resolve the phase
the defect itself. The data presented here are sampled
resolution of at least 14 pixels per wavelength, and the top

FIG. 13. Phase of the complex amplitude in a closeup view o
cross-roll pattern, as in Fig. 9. In~b! open~closed! circles represent
phase defects of positive~negative! topological charge.

FIG. 14. Sketch of phase defects~a! in a continuous complex
field, and~b! in a discrete complex field.
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logical charge at each pixel is calculated using a loop c
sisting of the eight surrounding pixels. Under these con
tions, the error rate is extremely low. In order to identify a
defects in the pattern, the charge is calculated at each p
and recorded in a separate charge map. Generally, defec
between pixels, and are contained by loops centered on
adjacent pixels, as indicated by the unshaded lattice poin
Fig. 14~b!. Therefore, we identify any connected group
pixels with the same nonzero topological charge as a sin
defect. This algorithm is capable of resolving a pair of d
fects as long as they are separated by at least one pixel

In Fig. 16, phase defects of unit positive and negat
charge, identified using the algorithm described above,
marked by black and white dots for the two convection p
terns shown in Fig. 2. The disordered pattern in Fig. 16~a!
contains 436 positive defects and 416 negative defects,
ing a total of 852 defects and a net charge of120. The
ordered pattern, shown in Fig. 16~b!, contains 25 positive
defects and 97 negative defects, for a total of 122 defects
a net charge of272. The disordered convection pattern
evidently characterized by a large number of defects with
statistically significant net charge. The charge excess of 2
less than that which would be expected if the 852 defe
were randomly assigned a charge of61. The ordered con-
vection pattern, by contrast, is characterized by a m
smaller number of defects, which are predominantly of
same sign. In all runs in which a disordered pattern w
initiated ~using the protocol illustrated in Fig. 1!, the results
are qualitatively similar. The formation of an ordered, rot

FIG. 15. Plot of the phase of the complex amplitude along
path surrounding the defect, illustrating possible ambiguity in id
tifying a phase defect in a discretely sampled image.

FIG. 16. Identification of phase defects in the patterns shown
Figs. 2~a! and 2~b!. Defects of unit positive and negative topolog
cal charge are marked by white and black dots, respectively.
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56 5359PHASE DEFECTS AND SPATIOTEMPORAL DISORDER . . .
ing multidomain pattern is marked by an accumulation of
topological charge, followed by a rapid decrease in the nu
ber of defects. The net charge can only change due to de
entering the pattern from the boundary, whereas the decr
in the total number of charges occurs via the annihilation
pairs of oppositely charged defects within the pattern.

In Fig. 17, contours of Re(A)50 and Im(A)50 are
shown for a different TW pattern which were created us
the same protocol used for the pattern in Fig. 16. The f
panels show an area at the center of the pattern, cove
roughly half the area of the convection cell. Positive a
negative phase defects are marked by filled and open d
The trend is clear: as the pattern evolves, the knot of ph
contours disentangles itself and evolves into a series of
allel lines which cross themselves the minimum number
times necessary to satisfy the external boundary conditi
These boundary conditions are mainly determined by
global rotation of the pattern and the tendency of the rolls
be oriented perpendicular to the cell boundary. The disen
gling of the phase contours results in the annihilation of pa
of oppositely charged defects, leaving behind the exc
charge.

B. Phase defects as a measure of disorder

An examination of Figs. 16 and 17 indicates that the
dering of the TW convection pattern is marked by a striki
change in the topological structure of the complex order
rameter. The disordered pattern has a very high densit
phase defects, whereas the order parameter of the ord
pattern has a smooth phase distribution, with defects oc
ring only at domain boundaries. This suggests that the n
ber of phase defects present in the pattern could be a g
measure of the level of disorder.

We note that some care must be taken before identify
disorder with these phase defects. Most of the phase de

FIG. 17. Contours of Re(A)50 and Im(A)50 for an area near
the center of the convection pattern. Positive~negative! defects are
marked by closed~open! circles. The four patterns were recorde
~a! 45t, ~b! 232t, ~c! 418t, and~d! 697t, after TW convection was
initiated.
t
-

cts
se
f

g
r

ng
d
ts.
se
r-
f
s.
e
o
n-
s
ss

-

-
of
red
r-
-

od

g
cts

which are observed in the disordered patterns occur in
alternating cross-roll patches. If a uniform cross-roll patte
were stable, so that the four amplitudes in Eq.~20! were
equal and independent of time and space, the alterna
cross-roll pattern would consist of a perfect lattice of defec
In this case, a large number of defects with no net cha
would be an indicator oforder in the convection pattern. It is
precisely because the cross-roll pattern is unstable and
uniform that a large population of phase defects with
charge zero is an indicator of disorder in this system.

The instability of the alternating cross-roll pattern is im
plicit in the tendency of the patterns, which initially are ric
in superpositions of wave components, to organize the
selves into domains of pure traveling waves. This occ
because the dominant wave component within a superp
tion of waves tends to grow at the expense of the wea
components, until only a single-wave component remains
is possible to directly measure the decay of the weaker w
component within a superposition of waves by studying d
main boundaries, where there is a region of persistent w
interaction@41#.

The nonuniformity of the cross-roll patterns may be co
firmed by direct examination of a cross-roll pattern, and
its Fourier transform. Figure 18 shows an area of a conv
tion pattern containing a well-defined alternating cross-r
pattern. The pattern exhibits significant nonuniformity. The
is a tendency for different wave components to dominate
different parts of the pattern, which indicate fluctuations
the modulus of the wave component amplitudes. In additi
the alternation of horizontal and vertical rolls is not synch
nized over the pattern, indicating phase fluctuations in th
amplitudes. The four wave components of the cross-roll p
tern can be identified in the Fourier transform of Fig. 1
which is shown in Fig. 19. The substantial spreading of
four main spectral peaks is a direct result of the nonunif
mity of the pattern.

The net charge also has significance in understanding
evolution of the TW patterns. The convection rolls all have
perpendicular attachment to the unforced cell boundary,
each of these rolls terminates at a phase defect somewhe
the convection pattern—either at a domain boundary, a
location, or the edge of a cross-roll patch. Therefore, e
roll attached to the boundary contributes a net charge
61, depending on whether it is moving clockwise or cou
terclockwise around the cell boundary.~This may be con-

FIG. 18. A shadowgraph image of an area of a convection p
tern containing a cross-roll pattern.
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5360 56A. La PORTA AND C. M. SURKO
firmed by examination of Fig. 16.! Rolls for which both ends
are within the pattern have defects with opposite charg
either end and contribute no net charge. The wavelengt
the pattern is quite rigid in this system, and there is room
72 rolls around the boundary of the convection cell. T
maximum net charge occurs when all of the rolls are mov
in the same direction around the cell boundary, giving
charge of672, where the sign depends on the direction
rotation. The net topological charge of the pattern is the
fore an indicator of the global rotation of the pattern.

We may now use the net charge and the total numbe
defects to characterize the ordering of the TW convect
patterns. Figures 20 and 21 show the complex order par
eter and associated phase contours at four times during
coarsening of the pattern, and Fig. 22 shows the identifi
tion of phase defects from the corresponding panels in
20, in which positive and negative defects of unit charge
indicated by closed and open circles, respectively. The p
tions of the defects during the previous 23t are shaded, in-
dicating their trajectories. In Fig. 23, the number of defe
and the net charge are plotted as a function of time for
runs during the coarsening of the patterns. The black cu
are calculated from the pattern shown pictured in Figs.
20, and 22, and the gray curves are calculated for anothe
conducted under nominally identical experimental con
tions.

Figure 23 shows that the patterns initially have a la
number of defects, with a net charge that is near zero. T
indicates a substantial coverage by the disordered cross
pattern and no discernible global rotation. The pattern sho
in Fig. 16~a! is in this stage of development. Within the fir
100t, there is a rapid ordering of the pattern, characteri
by a decrease in the total number of defects, but no sig
cant change in the net charge. In this stage traveling wa
either moving along the boundary or radiating from sour
on the boundary, encroach on the disorder in the cente
the pattern, causing a decrease in the area occupied b
cross-roll pattern. This initial ordering of the pattern does

FIG. 19. The spatial Fourier transform of the cross-roll patt
shown in Fig. 18, where black indicates maximum spectral pow
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of
r

e
g
a
f
-

of
n
m-
he
a-
g.
e
i-

s
o
es
,

un
-

e
is
oll
n

d
fi-
s,
s
of
the
t

lead directly to the highly ordered convection pattern o
served at long times, but seems to stall with several hund
defects remaining. The ordering is arrested because cross
patches continue to be sustained in the center of the pa
by the collision of traveling-waves and because the sour
which appear on the boundary, are not stable. The pat
shown in Figs. 20~a! and 22~a! is recorded immediately afte
this initial ordering has occurred. This pattern contains a
tal of 553 defects and a net charge of119, exhibiting a

n
r. FIG. 20. The phase of the complex amplitude at several sta
of the evolution of the pattern depicted in Fig. 2. The elapsed t
since the initiation of convection is given for each of the four im
ages.

FIG. 21. Contours of Re(A)50 and Im(A)50 are marked by
black and gray lines for the patterns shown in the four panels of
20.
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56 5361PHASE DEFECTS AND SPATIOTEMPORAL DISORDER . . .
substantial coverage by the cross-roll patches, but no sig
cant rotation. This is apparently the highest level of ord
that can be achieved in a nonrotating pattern.

Returning to Fig. 23, the net charge steadily accumula
during the period from 100t to about 500t, while the total

FIG. 22. Defect identification for the four panels of Fig 2
Positive~negative! defects are marked by closed~open! circles and
the positions of positive~negative! defects over the previous 23t
are shaded in light~dark! gray.

FIG. 23. Statistics of phase defects as a function of time for
convection patterns created under identical experimental condit
The black curve is the same run shown in Figs. 16, 20, and 22.
dashed line in~b! represents the minimum level of272 defects.
fi-
r

s

number of defects remains high, signaling that the patte
are developing a sense of rotation, while remaining larg
disordered. The pattern shown in Figs. 20~b! and 22~b! is
recorded near the end of this period of persistent disor
and has 321 defects with a net charge of227. Examination
of the rolls near the boundary of the pattern in Fig. 20~b!
reveals that about two-thirds of the rolls are moving in t
clockwise direction, indicating that clockwise rotation is b
ginning to dominate. In Fig. 22~b! negative defects~open
circles! can be seen entering the pattern from the cell bou
ary, particularly in the dislocations originating on the rig
side of the cell and in the small, poorly formed zipper boun
ary which is moving in from the far left.

The pattern continues to accumulate net charge and
time 800t, it reaches the limiting value of272, indicating
that the globally rotating pattern has fully formed. This
immediately followed by an almost total collapse of th
number of defects in the pattern. Figs. 20~c! and 22~c! show
the pattern shortly after this transition has occurred. At t
point, the pattern has 156 defects and a net charge of270.
From this time onward, the number of defects is remarka
stable, with a net charge remaining at27161 and with the
total number of defects varying between 100 and 150. F
ures 20~d! and 22~d! show a particularly well-ordered patter
from this final stage of the coarsening process.

Although the nature of the patterns depends sensitively
the Rayleigh number, the ordering process seems to be
sentially the same over a broad range of Rayleigh numb
near r s , where perpendicular or zipper domain boundar
predominate@32#. The ordering of the pattern begins imm
diately, but stalls with 300–500 defects remaining, while t
net charge of the pattern steadily accumulates. When
limiting net charge of672 is reached, there is a rapid d
crease in the number of defects, suggesting that the orde
mechanism is facilitated by the state of global rotation.
higher values of the Rayleigh number~nearer tor !) the do-
main boundaries contained in the patterns become pin
and the patterns are a composite of traveling and station
rolls. In this regime, the pattern dynamics are qualitativ
different, and the analysis techniques described here, w
depend on the oscillatory nature of the pattern, cannot
used.

The process by which the pattern orders itself is also c
cally dependent on the boundary conditions at the sidewa
the convection cell. Because of its physical construction,
sidewall of the convection cell is thermally neutral@32#,
which causes the convection rolls to be oriented perpend
lar to this boundary. Also, because the radius of curvature
the circular cell boundary is much larger than the roll wav
length, sources on the cell boundary~wall foci! are unstable.
The globally rotating patterns are consistent with these
conditions, since they allow for the perpendicular orientat
of the rolls and do not require sources on the boundary
mixed rotation pattern, with domains of rolls moving in di
ferent directions around the cell boundary, implies the pr
ence of sources and sinks at the boundary, which are
found to be stable and break down into disordered structu
The fact that sources on the boundary are unstable h
profound influence on the development of the patterns. O
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tion u(r ) goes to zero atr 50, where the phase is undefined.
At t50, uz is positive for positivex.0 and negative for
x,0, and the connection of the flow lines above and belo
the midplane of the fluid layer imply vorticity in the negative
y direction. At timet5p/4v, the flow field has rotated, so
that uz is positive fory.0 and negative fory,0 and the
vorticity is along x. In general, the vorticity at the phase
defect core rotates in the horizontal plane at frequencyv.

The existence of traveling waves in binary fluid convec
tion depends sensitively on the development of a phase sh
between the temperature and concentration fields, which h
been shown to occur in simulations of two-dimensional TW
convection@28#. This breaking of symmetry has also been
observed in quasi-two-dimensional convective flows in re
stricted geometries@45,46#. Presumably, a similar flow
would develop in the large domains of traveling waves in
patterns studied here. As described above, phase defects c
respond to points in the pattern where the flow is very com
plicated, and it is plausible that this could interfere with the
delicate interaction of temperature and concentration in th
TW state.

There is experimental evidence that TW convection i
modified in the neighborhood of the phase defects. In Fig
25, the temporal oscillation frequency is shown as a functio
of position for a pattern containing large domains of travel
ing waves, as well as some concentrations of defects. Th
frequency field was calculated using an algorithm we hav
described elsewhere@32#. A significant suppression of the
oscillation frequency is observed in the vicinity of the phas
defects. Figure 26 is a histogram of the frequency da
shown in Fig. 25. It is clear from this histogram that the
oscillation frequency and therefore the phase velocity is sig
nificantly lower near the defects than in regions of pure trav
eling waves. This suppression of the frequency is consiste
with a decrease in the effective separation ratio in the vicin
ity of the phase defects.

VI. INTERACTION OF DEFECTS

In Sec. V, it was shown that the phase defects are a
effective measure of disorder in the TW convection pattern

t of

ar-

-

FIG. 25. Frequency field calculated from the pattern shown i
Fig. 20~c!. Phase defects of positive~negative! charge are marked
with black ~white! dots. The frequency is in units of the vertical
diffusion time and is mapped to grayscale according to the legen
experiments in a rectangular convection cell~not shown! in-
dicate that a stable source can form in a corner of the cel
this case, the source launches stable waves into the pat
which leads to a rapid orderingwithout global rotation.

C. Physical significance of the phase defects

An important issue is what physical significance, if an
can be attributed to the phase defects in the TW patterns
many contexts, the topologically charged phase defects s
as those described here are called vortices@6#. This is an
appropriate interpretation in cases where the gradient of
order parameter is a current, so that the phase defects
associated with current loops. An example of such a cas
the Ginzburg-Landau theory of superconductivity, where
gradient of the order parameter is the supercurrent, and
current loop associated with the phase defect confines a
of magnetic flux.

In the experiment described here, the shadowgraph v
alization system is sensitive to fluctuations in the fluid de
sity, which are closely correlated with the temperature a
with the vertical component of the fluid velocity near th
midplane of the convection cell. Since the order paramete
associated with the vertical component of the fluid veloci
the phase defect is not directly associated with the vert
vorticity in the fluid. In fact, the phase defect indicates t
presence of horizontal vorticity that precesses about the
tical axis, as illustrated in Fig. 24. Near the defect, the v
tical component of the velocity is of the form

uz~x,y,t !5Re@u~r !ei ~u2vt !#, ~21!

where r is the distance from the defect core andu is the
polar angle in the standard cylindrical coordinates. The fu

FIG. 24. Schematic representation of the vertical componen
the velocity field (vz) for a defect at the origin (x5y50). The dot
represents upflow, the cross represents downflow and the gra
row indicates the direction of the vorticity at times~a! p/4v, ~b!
p/2v, ~c! 3p/4v, and~d! p/v. The vorticity precesses at the tem
poral oscillation frequency,v.
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56 5363PHASE DEFECTS AND SPATIOTEMPORAL DISORDER . . .
It is possible to go one step further and ask if the dynam
of the defects and particularly their interaction with ea
other, are significant in determining the development of
pattern. The most basic way to address this question i
measure the defect-defect correlation functions.

In order to measure these correlations, the complex o
parameter is first calculated as a function of time and sp
for a high-resolution video sequence, such as the one sh
in Fig. 17. For each frame, a list is compiled of the char
and position of each defect. The correlation functions
then calculated using the formulas

Cpp5
1

Npp
(

mÞn
d~xn2xm2x!d~yn2ym2y!d~cn2cm!,

~22!

Cpn5
1

Npn
(

mÞn
d~xn2xm2x!d~yn2ym2y!d~cn1cm! ,

where Cpp(x,y) is the correlation between defects of lik
sign, andCpm(x,y) is the correlation between defects of u
like sign. In these formulas, the summations are over
pairs of defects in a given frame, (xn ,yn) are the integer
coordinates andcn is the charge of thenth defect. The sym-
bol d (n) is defined to be one whenn50 and zero otherwise
The correlations are normalized to the number of defects
indicate the probability that a defect has a neighbor of
specified sign at a given displacement. The correlation fu
tions are calculated averaging over as many frames as
essary to obtain adequate statistics.

The like- and unlike-sign correlation functions (Cpp and
Cpn), calculated for a disordered convection pattern,
shown in Figs. 27 and 28, respectively. The data are a
aged over approximately 300t and are calculated from de
fects in the central region of the convection pattern, so t
the cell boundary is not an important influence on the mot
of the defects. Most of the defects in the pattern appear in
extended cross-roll patch, so that the correlation funct
mainly reflects the periodicity of the lattice of defects in t
cross-roll pattern~see Fig. 13!. Since the ordering of the
pattern is closely related to the instability of the cross-r
pattern, these correlation functions may give some ins
into the ordering mechanism.

FIG. 26. Histogram of the frequency field shown in Fig. 25.A
indicates the frequency close to the phase defects, andB indicates
the frequency far from the phase defects.
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In the like-sign correlation function,Cpp , shown in Fig.
27, there are four large peaks arising from the nearest
sign neighbors, as well as smaller peaks arising from m
distant neighbors. In the unlike-sign correlation functi
Cpn , shown in Fig. 28, there are again four peaks co
sponding to nearest neighbors.

The radial distributions of the correlation functions
plotted in Fig. 29. Both functions approach the sa
asymptotic value at large separations, but are dramati
different at small separations. The distribution ofCpp exhib-
its peaks atA2h and at 2h, indicating a tendency for like

FIG. 27. Like-sign defect-defect correlation function (Cpp) for a
disordered TW convection pattern.

FIG. 28. Unlike-sign defect-defect correlation function (Cpn)
for a disordered TW convection pattern.
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sign defect pairs to maintain these separations. The m
significant aspect ofCpp is the fact that it goes to zero as th
displacement approaches zero, indicating that defects of
sign never approach each other, so that there is an effe
hard-core repulsion among defects of like sign. The distri
tion of Cpn has peaks ath and A5h. The distribution of
Cpn has a finite value at zero displacement, suggesting
there is no repulsion between defects of opposite sign
short range, but that the defects tend to sit at a finite sep
tion.

The defect-defect interactions implied by the measu
defect correlation functions can be related to some of
basic features of the disordered convection patterns.
ability of unlike-sign defects to approach each other allo
annihilation to occur and facilitates the ordering of the p
terns. The inability of like-sign defects to approach ea
other prevents the formation of multiply charged defe
structures, such as multiarmed spirals.

It is important to determine the extent to which the cor
lation functions measured in the disordered patterns are
trinsic properties of the phase defects, rather than mere
reflection of the periodic nature of the cross-roll pattern. O
way to address this question is to see if the correlation fu
tions measured in the disordered patterns are consistent
the behavior of the defects in the ordered patterns.

Figure 30 shows defect-defect correlation functions co
piled from a period of 350t during the evolution of an or-
dered convection pattern, such as those shown in Figs.~b!
and 20~d!. During the video sequence, the pattern cons
mainly of large domains of traveling waves separated
nominally perpendicular domain boundaries, along w
small, transient cross-roll patches. Even though the cross
pattern fills a relatively small area of the pattern, it conta
a high density of defects, and tends to dominate the def
defect correlations, even in the ordered patterns. In an
tempt to measure the ‘‘bare’’ defect interactions, a con
tional probability distribution was calculated, in whic
defects are excluded if they have six or more neighb
within a radius of 2h. This condition excludes defects i
cross-roll patches, for which 12 neighbors are expected,
includes defects in domain boundaries, dislocation, or
small ensembles of defects. Comparison of the correla
functions in Figs. 29 and 30 helps to distinguish betwe
bare defect interactions and the ensemble interactions w
occur in the cross-roll pattern.

FIG. 29. The radial distribution of the defect-defect correlati
function. The dashed line indicates like-sign correlation (Cpp), and
the solid line indicates unlike-sign correlation (Cpn).
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At small separation, the like-sign correlation functio
Cpp in Fig. 30 resembles that of Fig. 29, rising from a val
of zero at zero separation, to a maximum near separa
A2h, although the smaller peaks at larger separation are
sent in Fig. 30. In the ordered pattern, like-sign defects s
exhibit hard-core repulsion and the tendency to sit at spac
of A2h, which was found for the disordered patterns, a
these appear to be intrinsic properties of the phase defe

However, the unlike-sign correlation functionCpn in Fig.
30 is very different from that shown in Fig. 29. In Fig. 3
Cpn has a shallow dip at separations nearh, and rises to a
maximum for zero separation, exhibiting no peaks at fin
separation. The dip inCpn at small nonzero separation su
gests that defects which come within range are drawn
gether and annihilate. This is consistent with the obser
motion of the defects in the ordered patterns. The large pe
in Cpn observed in Fig. 29~which suggest that oppositel
charged defects could form bound pairs! are apparently spe
cific to the cross-roll pattern, and are not applicable to
fects in isolation.

VII. CONCLUSION

In this paper we considered the coarsening of a traveli
wave convection pattern, that is to say, the transition from
disordered pattern to a ordered one. This transition is
marked by a dramatic change in the spatial Fourier spect
or the spatial autocorrelation function of the patterns. B
ordered and disordered patterns are comprised of a con
ous spectrum of wave vectors, which spans all directions,
a narrow range ofuku. In the disordered patterns, the wav
components with differing directions overlap, whereas, in
ordered pattern, they are segregated into individual dom
of traveling waves. The ordering of the patterns does not
one might have expected, consist of a dramatic sharpenin
the wave number spectrum, or increase of long-range or
as measured by linear correlations or mutual information
the frequency domain, the ordering of the pattern appare
corresponds to the formation of complicated phase relat
ships among the Fourier components.

FIG. 30. The radial distribution of the conditional defect-defe
correlation function~from which defects within cross-roll patche
are excluded! as described in the text. The dashed line indicates
like-sign correlation (Cpp), and the solid line indicates the unlike
sign correlation (Cpn).
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The most important results of this study are twofold: w
can extract the complex order parameter from experime
TW patterns, and the coarsening of the patterns is assoc
with a dramatic change in the topological structure of t
order parameter. The disordered patterns contain a l
number of singularities in the phase of the order parame
with phase defects of positive and negative topologi
charge occurring in roughly equal numbers. As the patte
coarsen and domains of traveling waves suppress the su
positions of wave components, pairs of oppositely char
defects annihilate, leaving behind a much smoother ph
field. The defects which remain form linear arrays of lik
sign defects, which correspond to boundaries between
mains of traveling waves. At the same time, a buildup of
charge occurs due to a charge imbalance between de
entering and leaving the pattern at the system boundary.
accumulation of this net charge corresponds to the deve
ment of global rotation in the pattern. We conclude that
total number and net charge of the population of defects
very direct measures of the level of disorder in the syste

Another important question is whether it is possible
elevate the phase defects from their role as mere indicato
the pattern dynamics to a role ofdeterminingthe dynamics
of the patterns. In spatially extended dissipative systems,
organization of a pattern is often associated with the form
tion of coherent structures. In an idealized, homogene
Rayleigh-Bénard convection pattern, the convection ro
themselves are the primary coherent structures. In the
complicated convection patterns studied in this paper, i
possible that the defects in the pattern might be regarde
the central ‘‘coherent structures’’ in the system, and that
development of the pattern can be interpreted as resu
from the interaction of these defects with the underlyi
wave field and with each other.
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The latter part of this paper begins to address this iss
Figure 22 illustrates the relationship between the defects
the wave field, with defects remaining stationary within t
alternating cross-roll patches, slowly drifting in doma
boundaries, and being swept along with the waves in dis
cations. The correlation functions shown in Figs. 27 and
address the interaction of the defects with each other,
suggest that there may be an effective defect-defect inte
tion potential which exerts a strong influence on the dev
opment of the patterns. While the calculation of the def
correlation functions is only the crudest measure of defe
defect interactions, the ability to track the trajectories
phase defects in this system leaves open the possibilit
doing more in-depth studies of the defect dynamics.

Finally, to take a more general view, complex amplitu
fields containing phase singularities are used to describ
variety of physical systems. In the Ginzburg-Landau the
of superconductivity, flux vortices are described using
identical formalism, and the lattice of defects in a alternat
cross-roll pattern makes an interesting comparison with
Abrikosov flux lattice. Similar vortex structures were als
studied in superfluid helium, in optical resonato
@6,7,14,47,48# and in reaction-diffusion systems@49#. The
traveling-wave convection system studied here is particula
attractive because in this system it is possible to direc
measure the dynamics of the complex order parameter in
experiment containing a large number of phase defects.
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