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Phase defects and spatiotemporal disorder in traveling-wave convection patterns
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Spatiotemporal disorder is studied in traveling-wave convection in ethanol-water mixtures. Spectral mea-
sures of disorder, linear correlation functions, and mutual information are used to characterize the patterns, and
are found to give a weak indication of the level of disorder. The calculation of the complex order parameter for
experimental patterns is described. It is found that the ordering of the patterns is accompanied by a dramatic
change in the topological structure of the order parameter. Specific arrangements of defects are found to be
associated with the elements of traveling-wave patterns, and the net charge and total number of defects is
introduced as a measure of disorder in the patterns. The coarsening of the patterns is marked by an accumu-
lation of net charge and a dramatic decrease in the number of defects. The physical significance of the defects
is discussed, and it is shown that the phase velocity of the waves is lower in the vicinity of the defects. The
defect-defect correlation functions are calculated for the convection patterns. It is shown that the ordering of
the patterns is closely related to the apparent defect-defect intera¢d&i¥63-651X97)01809-9

PACS numbgs): 47.54:+r, 47.27.Te, 47.5%]

I. INTRODUCTION which exhibit amplitude chaofl5,16 as well as defect-
mediated chaof6,17,18. In the latter case, the statistics of

In a spatially extended system which is driven far fromphase defects have been used as an indicator of disorder in
equilibrium, a change in the strength of the forcing param-chaotic pattern$19]. It has also been found that the topo-
eter or in the other physical parameters can cause an initiallipgical structure of the defects can place significant con-
homogeneous system to become unstable to a spatial modstraints on the properties of the pattefa6]. While it would
lation [1]. The resulting breaking of translational symmetry be interesting to apply these ideas to the analysis of experi-
and formation of a pattern can be an important influence omental systems, it is difficult to develop robust and accurate
the physical properties of the system, such as energy, matatgorithms for locating defects in experimental patterns.
rial, or momentum transport. Examples are as diverse as the |n this paper, we present a study of traveling-wave con-
formation of convection rolls in a fluid layer heated from yection in a mixture of ethanol and water. We describe a
below [2], the formation of chemical waves in a reaction- transition from a pattern exhibiting intense defect-mediated
diffusion system([3] the self-organization of a colony of disorder to a highly ordered pattern consisting of large do-
amoebd4,5], or the excitation of transverse spatial structuremains of traveling waves separated by domain boundaries.
in a large aperture las¢6—8]. We find that the spectral properties and amplitude correla-

Whereas patterns in equilibrium systems are constrainelons of the patterns give a weak indication of disorder in the
by a free-energy minimization principle and typically exhibit patterns. By calculating the complex order parameter of the
relaxational dynamics, patterns in nonequilibrium systemsgonvection pattern, we show that it is possible to identify and
are free from this constraint and can exhibit complicatedtrack the trajectories of phase defects in the convection pat-
nonrelaxational dynamics. Under some circumstances, paferns with high accuracy. The statistics and dynamics of
ticularly when driven only slightly beyond their primary in- these defects are found to be a much more effective measure
stabilities, patterns in nonequilibrium systems can be highlysf disorder in the patterns. We calculate the defect-defect
ordered, consisting of a regular pattern with a small numbegorrelation functions and show that, to some extent, the
of defects. Under these circumstances, it is often the case thadarsening of the pattern can be understood in terms of the
the patterns are universal and are determined by the symm@ynamics and interactions of the defects.
tries of the systenjl]. When driven farther beyond their
primary instabilities, nonequilibrium systems often exhibit
spatiotemporal disorder, in which the physical variables vary |, conVECTION IN ETHANOL-WATER MIXTURES
in time and space in a complicated manner. In some systems,
this spatiotemporal disorder takes the form of the compli- Rayleigh-B@ard convection in a mixture of ethanol and
cated evolution of an amplitude field, and the behavior of thewvater is an example of double diffusive convection. In this
system is naturally described in terms of the dynamics of thisystem, there are two quantites—heat and ethanol
field [9—11]. In other cases, coherent structures or defects itoncentration—which induce density fluctuations and can
the pattern appear to take a primary role, and a description afrive the convective flow. A thin layer of fluid, having aver-
the system can be made in terms of the dynamics and inteage ethanol concentratian is confined between two plates
actions of these structur¢s2-14. separated by a distande The plates are impenetrable to

A variety of mathematical models have been introducedoth components of the fluid and have a much larger thermal
to describe patterns and spatiotemporal chaos in physicallgonductivity than that of the fluid mixture. The dimension-
extended nonequilibrium systems. These include modelkess forcing parameter is the Rayleigh number
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where g is the acceleration of gravityy is the kinematic
viscosity, « is the thermal diffusion coefficient is the ther-
mal expansion coefficient, aniiT is the temperature differ-
ence imposed on the fluid layer. Ethanol-water mixtures ar
distinguished by having a strong Soret effect. The transpol
of ethanol concentration in the mixture is given by
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wherej.. is the ethanol concentration fluy,is the fluid ve- Reduced Rayleigh Number

locity, D is the ethanol diffusivity and, is the Soret coef- o ) ) .

ficient [21,22). The first and third terms on the right side of FIG. 1. Schematic bifurcation diagram for convection in a pure

Eq. (2) are the diffusion and advection terms, but the Seconéluid and in a binary mixture with negative separation ratio. In the
' ' mixture, the heavy solid line indicates traveling-waiiaV) con-

term is a cross-diffusion term, and indicates that a concen- " . LT ) .
vection, and the heavy dashed line indicates stationary overturning

tra_tlcc))n flu(;( a”hses frotm a terrlpera(';gfrfe gradlgnt. BeIIF)V(\jI (t)nstre]t SOQ convection. Disordered states are initiated via the transient
u=0, and, wnen a temperature difterence IS applied to indicated by the gray arrow.

fluid layer, the concentration gradient builds up until a steady
state is reached for whigh=0.

Above the onset, the convective flow transports both heat T the Rayleigh number is increased further after TW con-
and ethanol concentration, resulting in a complicated interection has been initiated, the phase velocity of the TW state

play of the temperature, concentration, and velocity fielgsdecreases until a transition to stationary overturning convec-

. N : :
The coupling between the thermal and concentration densit§on is reached at” [30,31. If the Rayleigh number is de-
gradients is the separation ratio reased, the phase velocity increases and TW convection re-

mains stable until a saddle node bifurcation is reached at
rs. At this point, the finite amplitude convection state
y=—-5c(l-c)—, 3 abruptly disappears. The measured values for the bifurcation
@ points in the 8% mixture used here arg=1.40,r,=1.23,

whereB=p~(dp/dc) is the concentration expansion coef- andr”=1.58. died i lindrical . I'h
ficient. A negative value of indicates that the concentration | Patterns were studied in a cylindrical convection cell hav-

density gradient opposes the thermal density gradient, anf9 @ diar_netfr of 21 cm and a height Of_0'4 cm, Wit_h an
tends to stabilize the fluid layer against thermal convection@SPect ratid’=r/h of 26. The patterns are visualized using a
hite-light shadowgraph and recorded using a CCD camera

The nature of the quiescent state is specified by Ra anl :
&, but the onset and the dynamical properties of convectioﬁnd computer frame grabber. The results described below are

also depend on the relationships between the relevant diff £XPressed in terms of the characteristic time and distance
sive time scales in the system. The Prandt numbe?cales .of the system; dlstgnces are exp_ressed in terms _of the
Pr=v/k relates momentum diffusion to heat diffusion, and cell he|ghth=0.4 cm, which sets the size of a convection
influences the onset of secondary instabilities. The Lewig(_)"' a_nd tl_mes arezexpressed In terms_of_ the vertical thermal
numberZ=D./« relates concentration diffusion to heat dif- diffusion time 7=h"/«x=124 s. A description of the appara-
fusion, and is important in determining the onset and dynamgus’ as we_II as a survey of TW patterns in this system, has
ics of the convective state. For smélland sufficiently nega- been published elsewhef82].
tive values of ¢, the onset of convection is a Hopf
bifurcation to a state of oscillatory convection in which the
convection rolls rock back and forth, rather than overturn
steadily[23-25. In order to create a maximally disordered convection pat-
The experiments described in this paper were performetern, the Rayleigh number is rapidly increased from zero to a
in a mixture of 8% ethandby weigh) in water at an average value of about 2.2, then quickly set to a value of 1.25 when
temperature of 26 °C, for whicly=—0.24, P=12, and the onset of convection is observed. This shock to the sys-
L£=10"2[26]. A schematic bifurcation diagram for this mix- tem, represented by the gray arrow in Fig. 1, produces an
ture is shown in Fig. 1. Because of the large negative valuextremely disordered pattern which is composed of superpo-
of ¢ and the strong separation of time scales for mass ansitions of wave components and small domains of traveling-
thermal diffusion in this mixture, the Hopf bifurcation at waves. Such a pattern is shown in Figa)2 Eventually, a
I'so IS Strongly subcritical and the amplitude of the oscillatory highly ordered convection pattern forms in the cylindrical
convection grows until large-amplitude traveling-wdi&V)  convection cell consisting of several large domains of trav-
convection is triggered. In the TW state, the convection rollseling waves separated by slowly moving, well-defined do-
overturn continuously, but propagate at a well-defined phasmain boundaries. The ordered patterns always exhibit global
velocity [27—29. TW convection has been widely studied asrotation, with the rolls in all domains moving around the
a model of strongly nonlinear wave propagation, in whichboundary of the convection cell in the same directi8g].
superpositions of wave components are unstable. The direction of rotation varies from run to run, but, once

Ill. DISORDER IN TW CONVECTION
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FIG. 3. Plot of the structure functiorg(k), of data shown in
Figs. 2c) (solid curve and 2d) (dotted curve The wave number is
in units of the inverse cell heigtit™*.

measure of the disorder can be found. As a first step in this
direction, the two-dimensional spectral distribution can be
reduced to a function ofk|, by integrating out the angular
dependence using

1 2m .
S(k)= ﬂjo P(k cost,k sing)de, (4)

whereP(k, k) is the power spectrum ar§(k) is called the
structure functior{11,13,33.

The structure functions calculated from the power spectra
in Figs. Zc) and Zd) are shown in Fig. 3, where the normal-
ization of S(k) is arbitrary, but the same for both patterns.
described in the textb) The pattern recorded 195&fter convec- E]igt.h?(; rv?/\:\a/gliSgi)necrr?j?sst?itI)Tjtlir(l)t:r:slti/haendaa':tzlrlr?ht;[eschoar;%imonr?
tion was initiated.(c) The spatial Fourier transform @¢#). (d) The dered. A bl . Ip h f
spatial Fourier transform db). (e) The autocorrelation function of ered. A reasonable strategy Is to evaluate the mpments_o
(). (f) The autocorrelation function ab). the structure func_tlon as a measure of the level o_f disorder in

the pattern. As will be discussed below, only a slight change
established, never reverses itself. A typical ordered pattern i§ these moments is observed during the ordering of the pat-
shown in Fig. 2b). tern.

The spatial Fourier spectra of the patterns in Figg) 2 The angular dependence of the autocorrelation function
and 2b) are shown in Figs. @) and 4d). Both spectra have can a}lso be integrated out to obtain a radial correlation dis-
a characteristic ring shape, with the spectral energy conceribution,
trated at/k|~ . On a fine scale, the spectrum of the disor-
dered pattern has a granular appearance, whereas the spec-
trum of the ordered pattern is smoother and has a banded
structure. On a coarser scale, the spectra are quite similar and
exhibit a similar dependence dk|. In Figs. Ze) and 2f),  whereC(x,y) is the spatial correlation function. The length
the spatial autocorrelation functions are shown for the disoref the tail of the correlation function, or more practically, the
dered and ordered patterns. The correlation functions botheight of thenth maximum(with n>1) may be used as an
show a target pattern, which is typical for quasiperiodic im-indicator of long-range order in the pattern. The radial cor-
ages. The correlation function for the disordered pattern igelation function, shown in Fig. 4, indicates a small increase
nearly isotropic, whereas the correlation function for the or4n long-range order as the large domains form.
dered pattern exhibits clear anisotropy. This is because the Having established that the structure function and radial
correlation is stronger for displacement directions corre-autocorrelation functions are modified by the ordering of the
sponding to the roll orientations in the large TW domains ofpatterns, we can use these quantities to track the coarsening
the ordered pattern. of the pattern. The evolution of the pattern was recorded in

The coarsening of the convection pattern is accompaniefi400 video frames, over a period of 136@&nd the Fourier
by subtle changes in the spatial Fourier spectrum and th&ansforms and correlation functions were calculated from
autocorrelation function, but these changes are less praach frame. In Fig. 5, the mean and standard deviation of the
nounced and no easier to quantify than the change in thstructure functiorS(k) and the value of the third maximum
pattern itself. An important issue is whether a simple scalaof the radial correlation functiort(r), are plotted as a func-

FIG. 2. (a) A TW convection pattern recorded at1.27, ap-
proximately 5@ after convection, was initiated by the procedure

1 T
C(r)=zf02 C(r cos,r sinf)dé, 5)
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FIG. 4. Plot of the radial distributiorG(r), of the autocorrela-
tion functions in Figs. &) (solid curve and 2f) (dotted curvewith

distance (units of h)
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tion of time. Fluctuations of-2% are found in the mean
wave number of the pattern, but no clear trend is evident.
The width of the wave number distributidirig. 5(b)] nar-
rows slightly, from 0.30 to 0.25, and the value of the radial
correlation function(at a distance of~6h or ~3\) in-
creases from 0.045 to 0.06Eig. 5(c)], a change which is
comparable to the noise in this measure.

To summarize the results of this section, the transition
from disorder to order in the TW convection patterns is ac-
companied by discernible changes in the spectral distribution
and the correlation amplitude of the patterns, but the changes
in these measures are surprisingly weak in view of the dra-
matic change in the pattern between Figé&)2and Zb).
Such a signal could easily be produced by a much less dra-
matic change in the pattern, such as a slight variation of the
wave number within the large roll domains. It can be con-
cluded that the patterns in Figg.aRand 2b) contain a con-

the angular dependence integrated out. Distances are in terms of ttiauum of spectral components concentratedkdt 7 and

cell heighth.
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spanning a continuous spectrum of angles. In the disordered
patterns, the individual spectral components span the entire
pattern and overlap with each other, whereas in the ordered
patterns, they are segregated in well-defined domains. The
small changes in the measures in Fig. 5 are a side effect,
rather than a direct result, of this qualitative change in the
nature of the patterns.

The fact that the coarsening of the patterns is not reflected
in the spectral properties of the system can also be inter-
preted as a failure of the linear paradigm in the analysis. If
we interpret the pattern as arising from a PDE, the spectral
components are independent if the nonlinear terms are ne-
glected. In this case, the spectrum would tend to be excited
according to the growth rates of the linearized system and
the phases would be random. The tendency of the pattern to
order itself, by partitioning itself into domains of traveling
waves, is a manifestation of the coupling between these spec-
tral components, which must arise from nonlinearities in the
system. The ordering of the pattern then manifests itself in
the development of complicated phase relationships among
the Fourier components, rather than in the spectral ampli-
tudes.

IV. AVERAGE MUTUAL INFORMATION

In the dynamical systems literature, the use of the corre-
lation function is sometimes criticized because it measures
only linear correlations between variables and ignores
higher-order correlations. In view of the discussion above, it
is not clear that linear correlations are the most appropriate
measure of disorder in the TW patterns. Instead of looking
for linear correlations in the images, we can ask a more
general question: is the probability distribution for the inten-
sity at a point in the image altered by the prior measurement
of the intensity at a neighboring point?

Let us label the two variable&d andB and their possible

FIG. 5. The time series of the spectral measures of disorder oy2luesa; andby.. (As applied to the patterns we are study-

the TW convection pattern shown in Fig. @) The mean value of

ing, A andB are the measurements of the pattern intensity at

the structure function distributiorib) The standard deviation of the WO points separated by a certain distandn expression
structure function distributior(c) The value of the third maximum for the amount of mutual information between these two

of the radial autocorrelation function. The wave number is in unitsmeasurements in terms of their joint probability distribution

of the inverse cell heighth%, and time is in units of the vertical
thermal diffusion time,r.

was derived by Shannon and Wea{@4]. The mutual infor-
mation(in bits) between measuremerasandb, is given by
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(6)

Pas(a;j,by)
I ag(a; ,by) =l0g, PA(aj)PB(bj)},
whereP,(a) andPg(b) are the probability distributions for

A andB andP,g(a,b) is the joint probability distribution. If
the two variables are independent, the measurement of th
first variable gives no information about the second variable
and the mutual information is zero. In this case, the joint
probability distribution is of the form

Pag(a,b)=Pa(a)Pg(b), (7
FIG. 6. Average pixel-pixel mutual information as a function of
and evaluation of Eq(6) gives displacement for the patterns of FiggaRand Zb). Black indicates
zero mutual information, and white indicates maximum mutual in-
I ag(a,b)=0, (8)  formation.
as expected. If two measuremenss, and by, are totally V. COMPLEX ORDER PARAMETER
correlated and; is measured, then the subsequent measure- AND PHASE DEFECTS

ment ofb, gives no additional information. In this case the
mutual information is large and, as expected, &).attains
its maximum value, which is of order lgg wheren is the
number of possible outcomes Afor B.

Order in a spatial pattern can be evaluated by determinin
how much information is obtained, on average, about a give
pixel by measuring the value of a pixel which is offset by a
certain distanc¢35,36. This average mutual information is
determined by evaluating

In the previous sections, the level of spatial disorder in the
convection patterns was measured in terms of the spectral
content and in terms of two different measures of long-range

rder(linear correlation and mutual informatiprThe order-
%g of the pattern is associated with a discernible change in
these measures, shown in Figs. 3, 4, and 7; however, these
measures do not appear to capture the essence of the coars-
ening process. In previous work, we have shown how the
complex order parameter may be calculated in the TW pat-
terns [32], and in this section we show that the level of
L(X,y)= 2, I as(3},b) Pag(@j b)), (99  disorder in the patterns can be described very effectively in

Ik terms of the topological structure of the order parameter.

where the summation is over all possible values of the pixel

intensitiesA andB. In evaluating Eqs(6) and (9), P, and A. Identification of phase defects

Pg are the probability distribution for the pixel intensity,  |n the traveling-wave patterns observed in this experi-

averaged over the image, amjg is the joint probability ment, the time series of each pixel in the video sequence is

distribution compiled from all pairs of pixels which are sepa-oscillatory, and the pattern can therefore be described as an

rated by the distancex(y). In this context, Eq(9) may be  ensemble of oscillators, one for each pixel. Taking this view,

interpreted as a generalization of the linear correlation functhe specification of the pattern at a given time consists of the

tion, which, in terms of the joint probability distribution, is complex amplitudémodulus and phagend oscillation fre-

quency of each pixel. The modulus of the complex amplitude

2 a:bePag(a; by (10 varies s_Iowa in space an_d time and so the stru.cture.of the

o0 %) kP ABLE) 1Pk pattern is determined mainly by the phase relationships be-

C(x,y)=

whereo, ando, are the standard deviations of the two vari- Lo
ables. The functior zg(a; ,by) replaces for the factoa;b, I
which appears in the linear correlation function.

The average pixel-pixel mutual information function for
the images in Figs. (8 and 2b) is shown in Fig. 6. The
mutual information map is a target pattern and is qualita-
tively similar to the autocorrelation function, Figsic®and
2(d). The angular dependence of the mutual information
function may be integrated out to obtain a radial distribution
of mutual information, which is shown in Fig. 7. The results
using mutual information seem qualitatively similar to those
obtained from the linear correlation function, with the or-
dered patterns exhibiting an enhancement of mutual informa- 0.0 1.0 2.0 3.0
tion at larger distances. The contrast between the ordered and distance (units of h)
disordered patterns seems to be somewhat more pronounced
in the mutual information, indicating that it is a more sensi-  FIG. 7. Radial distribution of the mutual information from the
tive measure of spatial disorder in the patterns studied herelata in Figs. €) (solid curve and b) (dotted curve

05

mutual information
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tween the pixels comprising the pattern. The rate of chang

of the pattern is closely related to the frequency fig@d). (a) (b)

The complex amplitude and frequency fields can be cal 3"/ZI T
culated from the oscillatory pattern data by performing a amplitude 0 w2
complex demodulation of the time series of each pixel a as 2 0
[37,38. It is assumed that the time series of each pixel, R T 3n/2
a(x,t), has a narrow Fourier spectrum, centeredvatand _\ WZDC Ty
can be written in the form - « 0 Y

a(X,t)=a,(x,t)cos wt+ ¢(x,1)], (11

FIG. 8. (a) A sketch of the envelope functions which appear in
Eq. (17). (b) The phase contours near a zipper boundary, where the

where t) is the envelope an@(t) represents a phase
(1) P @(1) rep P arrows indicate the direction of propagation.

modulation with respect to the carrier frequenoy Given

the time sequence for each pixel, our goal is to calculate the . . . . o
two unknown functionsr, (x.t) andé(x,t). The latter func- meaning, since it is closely related to the time derivative of

tion is particularly important. When evaluated at a giventhe pattern and indicates the local direction of propagation of

time ty, it indicates the relative phases of the oscillators rep—tr;gxwgr\éeesr' T:r'zrsggflgzsffr:g; cﬂostehl)e/ rce(li'getlde;o gﬁzﬁrp
resenting the pattern at that time. P P y P g

The functionsay,(x,t) and ¢(x.t) are calculated as fol- Landau equation, in which the temporal oscillation of the

lows. The data sequence is first multiplied by a carrier Wavé)attem corresponds to the rotation of the amplitude in the

e'“! wherew is chosen to match the observed spectral peal((:omplex plane, and the spatial derivatives in the equation

in the data. Dropping the explicit dependencexdinom our express the coupllmg betwee'n heighboring oscillators.
. ; e i Within a domain of traveling waves, the complex order
notation, the transformed time serie$)(t), is

parameter is of the form

’ — fot H H )
A (H)=a(t)e a,(t)cog wt+ ¢(t)](cowt+i sinwt) A(x,t) = Agelll-x—otl (16)
a,(t)
= 1cog2wt+ (t)]+cog ¢(1)] where w is the oscillation frequency, and the wave vector
k points in the direction of propagation. In this case, the
+i sif2wt+ ¢(t)]—i sin ¢(t)]}. (12 phase of the order parameter is smooth and well defined

everywhere. However, at a boundary between domains of
A low-pass filter is then applied to eliminate componentstraveling waves, there is an interface between regions with
with frequency greater thaw, leaving the near-dc terms different wave vectors, and it is impossible for the two fields
cog ()] and sii¢é(t)]. The resulting demodulated time se- to connect smoothly. One example of such a domain bound-

ries A(t) is ary, observed in TW convection, is a configuration called a
® “zipper.” In a zipper, the rolls on either side of the domain
a,(t oo boundary are perpendicular to the boundary, but propagate in
At) = =5 {cog ¢(0)]—i s p(1)]} Y firection L e g

opposite directions, in a configuration reminiscent of a shear
flow [32,39,4Q. The complex order parameter of the pattern
a,(1) —i(t) near the boundary is a superposition of two wave compo-
——e . (13

2 nents of the form

Examination of Eq(13) reveals that the modulus of(t) is A(x,t)=ay(x)e'ky=ob 4 g,(x)el(“ky=eb, (17)
the envelope functiomy(t) and that the complex phase of
A(t) is the phase modulation of the original da#(t). wherea,; and a, are the envelopes of the waves, and the

Although the experimental pattern is explicitly a real val- zipper is aligned along th& axis. Measurements indicate
ued function(i.e., the intensity of the image as a function of that the envelopes consist of a smooth crossover from one
time and spadeit is convenient to consider it to be the real component to the other, where the cutoff distance is of the

part of a complex order parametéx(x,t), defined by order of the pattern wavelengfi1], as sketched in Fig.(8).
ot Using Eq.(17) with this form fora,; andas,, it can easily be
a(x,t)=Re A(x,t)e'] shown that the complex amplitude is equal to zero at a series
—RGAXD)], (14) of points with coordinates
o ; At m 37 5w
where Re indicates the real part. The time derivative of the x=0, y= (18)

pattern is then given by 2k’ 2k "2k’

where the origin ok is defined such that;=a, atx=0. At
these points, called phase defects, the contours of
Re(A)=0 and Im@A)=0 intersect, and the phase of the
where in taking the derivative, it has been assumed thatomplex amplitude is undefined. The phase contours at a
A(x,t) varies slowly with time. In the TW patterns, tiflen-  zipper boundary are illustrated in Fig(. Writing the
seen imaginary part of the order parameter has a definitgphase of the complex amplitude &s the integral ofd¢ on

%a(x,t)~Re[iwA(x,t)eiwt], (15)
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FIG. 9. Phase of the complex amplitude in a closeup view of a
zipper taken from experimental dat@) The phase (6-27) is
mapped to gray scal@vhite—black). A 27 phase shift is accumu-
lated around the circular arc show() Contours of Ref)=0 and :
Im(A)=0, indicated by solid and dashed lines, intersect at the -
phase defects.

FIG. 11. Phase of the complex amplitude in a closeup view of a

. . ) dislocation, as in Fig. 9.
a closed path enclosing a defect is equal tm2wheren is g

defined as the topological charge of the defdd]. We have identified two other structures which commonly
Figure 9a) shows a high-resolution image of the complex gnpear in the TW convection patterns. The first is the simple

order parameter calculated from a TW convection patteriyjisiocation, shown in Fig. 11, in which a single defect marks

containing a zipper boundary. Waves are moving upward ofe termination of a roll. The second is the alternating

the left side of the boundary, and downward on the right sidecrgss-roll” pattern [43], in which two mutually perpen-

of the boundary. Several phase defects appear along the C&fjeylar standing waves alternate in timgan instability

ter line of the boundary. The circular arrow surrounding onésomewhat similar to this occurs in stationary convection, in

defect indicates a path over which aDhase shift is accu- \hich a region of long-wavelength rolls becomes unstable to

mulated, indicating that a defect of unity charge is containedy get of perpendicular rolls with a shorter wavelength, as

therein. Contours of Ré&)=0 and Im@A)=0 are shown in  gjscussed in Ref2]). The complex amplitude of the cross-
Fig. 9(b), and are found to cross at the phase defects. Thergy)| pattern is of the form

fore, a zipper boundary manifests itself in the order param-

eter of the experimental patterns as a row of phase defects  A(x,t)=a;(x,t)e' V4 a,(x,t)e' (7Kt

having the same unit topological charge and separated by a i(ky—wt) H(—ky—at)
distance ofr/k (half the pattern wavelength +ag(xt)e —ag(xt)e . (20

The results are similar for the case of a perpendicula\rNhere the envelopes (x.y.t) are nominally equal, but fluc-
boundary, for which P& (X, Y, y equal,

tuate in time and space. The time development of this field is
A(X,t)=a,(y)e (koD 4 g _(y)ei(—kx—wt) 19 shown in Fig. 12. _F|gl_Jre 1_3 shc_>ws data for an alternayng
(x)=au(y) 2(y) (19 cross-roll patch which is quite uniform on the upper-left side

In this case, a row of phase defects is obtained, but spaced [§d merges into a domain of traveling waves toward the
a distance Z/k, which is equal to the pattern wavelength, lOwer right. As may be determined from E¢RO0), or ob-
(In both the zipper and perpendicular boundaries, the numb&erved in Fig. 13, the cross-roll area contains alternating
of defects is equal to the number of roll pairs which termi- Positive and negative defects on a square lattice with a lattice
nate at the domain boundanA closeup of a perpendicular €onstant equal tar/k. The net charge of the czross-roll struc-
boundary, in which rolls move downward from the top of the ture is therefore zero, although there aké()” defects per

image and leftward along the bottom of the image, is showryNit area(44]. -~ . _
in Fig. 10. Given that specific structures in TW convection patterns

are predicted to be marked by specific configurations of de-
fects, and that the complex order parameter calculated from
experimental patterns exhibits these structures, it is useful to
design an algorithm that can automatically identify defects in
the convection patterns with maximum efficiency and reso-
lution. Figure 14 is a schematic diagram of the structure of a

FIG. 12. lllustration of the temporal development of an alternat-
ing cross-roll pattern. The four panels are obtained by evaluating

FIG. 10. Phase of the complex amplitude in a closeup view of &q. (20) with uniform and equaé,, att= 7/4w, /2w, 37/4w, and
perpendicular boundary, as in Fig. 9. 7lw.
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FIG. 13. Phase of the complex amplitude in a closeup view of a
cross-roll pattern, as in Fig. 9. lib) open(closed circles represent
phase defects of positiv@egative topological charge.

path winding angle

FIG. 15. Plot of the phase of the complex amplitude along a
L . ... path surrounding the defect, illustrating possible ambiguity in iden-
phase defect. In principle, a phase defect may be identifieghing a phase defect in a discretely sampled image.
by integrating the phasé¢ on a closed loop and checking
for nonzero topological charge. In practice, the complex am-

plitude calculated from an experimental pattern is not conlodical charge at each pixel is calculated using a loop con-

tinuous, but consists of values sampled on a discrete IatticSiSting of the eight surrounding pixels. Under these condi-
L X ‘mplec on. . ﬁons, the error rate is extremely low. In order to identify all
of pixels, as illustrated schematically in Fig. (b} It is

; . defects in the pattern, the charge is calculated at each pixel,
therefore not possible to calculate the topological charge : .

. i ) ) and recorded in a separate charge map. Generally, defects lie
from a discrete lattice with absolute certainty.

. . .__between pixels, and are contained by loops centered on four
If we assume, for example, that for a circular integration di el indi d by th haded latti L
ath the phase of the complex amplitude varies with th adjacent pixels, as indicated by the unshaded lattice points in
polar angle as shown by the solid curve in Fig. (#hich q:|g. 14b). Therefore, we identify any connected group of
P 9 ' by . 9. pixels with the same nonzero topological charge as a single
represents a topological charge of upityhen the values

sampled on a discrete representation of the fidldstrated defect. This algorithm is capable of resolving a pair 9f de-
fects as long as they are separated by at least one pixel.

in Fig. 14b)] would be represented by the gray circles on the In Fig. 16, phase defects of unit positive and negative

curve in Fig. 15. Howe_ver,_ the discrete reprgsgnt_aﬂon of th%harge, identified using the algorithm described above, are
dashed phase curve in Fig. 15 would be indistinguishable arked by black and white dots for the two convection pat-

from the representation of the solid curve, despite the fac?;rns shown in Fig. 2. The disordered pattern in Figal6

that the dashe_d curve represents a topological charge of Ze10ntains 436 positive defects and 416 negative defects, giv-
rather than unity. The trouble is that as we walk around the

: .~ 1ng a total of 852 defects and a net charge-o20. The
lattice and accumulate the total phase for the loop, there is an

A : ordered pattern, shown in Fig. @, contains 25 positive
ambiguity, modulo 2r, as to the value of the phase incre- .
L defects and 97 negative defects, for a total of 122 defects and
ment on each step. The most natural assumption is to choose

i ; net charge of-72. The disordered convection pattern is
the phase increment with the smallest absolute value on each . . .
évidently characterized by a large number of defects with no
step(so — 7<Ap<).

In practice, the calculation of the topological charge iSstatlstlcally significant net charge. The charge excess of 20 is

. X ; less than that which would be expected if the 852 defects
reliable as long as the typical phase difference between ad- .
. . . ; ; . were randomly assigned a charge-ofi.. The ordered con-
jacent pixels is well belowsr. In order to satisfy this condi-

tion, the image sampling resolution must be high com areéfeCtion pattem, by contrast, is characterized by a much
' 9 ping 9 Paree maller number of defects, which are predominantly of the

with the wave number of the pattern, and the number of steps . X . .
. - ; ame sign. In all runs in which a disordered pattern was
in the loop must be sulfficiently high to resolve the phase of

. initiated (using the protocol illustrated in Fig.,)1the results
the defect itself. The data presented here are sampled ata‘?’e gualitatively similar. The formation of an ordered, rotat-
resolution of at least 14 pixels per wavelength, and the topo-

[ ]
[ ]
L
[ ]
[ ]
[ ]

() (b)*

2%

Im(A)=0 Re(A)=0

FIG. 16. Identification of phase defects in the patterns shown in
FIG. 14. Sketch of phase defed® in a continuous complex Figs. 2a) and 2b). Defects of unit positive and negative topologi-
field, and(b) in a discrete complex field. cal charge are marked by white and black dots, respectively.
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FIG. 18. A shadowgraph image of an area of a convection pat-
tern containing a cross-roll pattern.

which are observed in the disordered patterns occur in the
alternating cross-roll patches. If a uniform cross-roll pattern
were stable, so that the four amplitudes in E20) were
equal and independent of time and space, the alternating
FIG. 17. Contours of R&)=0 and Im@)=0 for an area near cross-roll pattern would consist of a perfect lattice of defects.
the center of the convection pattern. Positimegative defects are  In this case, a large number of defects with no net charge
marked by closedopen circles. The four patterns were recorded would be an indicator ofrder in the convection pattern. It is
(a) 457, (b) 232r, (c) 418, and(d) 6977, after TW convection was  precisely because the cross-roll pattern is unstable and non-
initiated. uniform that a large population of phase defects with net
tcharge zero is an indicator of disorder in this system.
The instability of the alternating cross-roll pattern is im-
icit in the tendency of the patterns, which initially are rich
i superpositions of wave components, to organize them-
&lves into domains of pure traveling waves. This occurs

Ny

ing multidomain pattern is marked by an accumulation of ne
topological charge, followed by a rapid decrease in the num.,,
ber of defects. The net charge can only change due to defe
entering the pattern from the boundary, whereas the decrea

in the total number of charges occurs via the annihilation o} 0 .- <o the dominant wave component within a superposi-
pairs Of. oppositely charged defects within the pattern. tion of waves tends to grow at the expense of the weaker
In Fig. 17, contours of R&)=0 and Im@)=0 are components, until only a single-wave component remains. It

fr?ownnf]or ar dtlffer:ant T(\ij prag]ern V\g"(r:s ;/r\:elgia crlegtﬁ_dh us%lngis possible to directly measure the decay of the weaker wave
€ same protocol used for the patte 9. 16./Ihe O!Jcomponent within a superposition of waves by studying do-
panels show an area at the center of the pattern, coveri

. " in ndaries, where there is a region of persistent wav
roughly half the area of the convection cell. Positive and ain boundaries, where there s a region of persistent wave

. . interaction[41].
negative phase defects are marked by filled and open dots. The norEun]iformity of the cross-roll patterns may be con-

The trend is clear: as the pattern evolves, the knot of phasI‘\ermed by direct examination of a cross-roll pattern, and of

contoprs d|se'ntangles itself and evolves |.ntlo a series of pa ts Fourier transform. Figure 18 shows an area of a convec-
allel lines which cross themselves the minimum number o

i . tisfv th ; | bound dii ion pattern containing a well-defined alternating cross-roll
Imes hecessary o sa _|s_fy € externa’ boundary conditiongy,yer, The pattern exhibits significant nonuniformity. There
These boundary conditions are mainly determined by the

. s a tendency for different wave components to dominate in
global rotation of the pattern and the tendency of the rolls todifferent parts of the pattern, which indicate fluctuations in

b? oriented perpendicular to the ce_II boundar_y..Th'e disentgr{he modulus of the wave component amplitudes. In addition,
gling of the phase contours results in the annihilation of PalShe alternation of horizontal and vertical rolls is not synchro-

of oppositely charged defects, leaving behind the EXCeSFized over the pattern, indicating phase fluctuations in these

charge. amplitudes. The four wave components of the cross-roll pat-
tern can be identified in the Fourier transform of Fig. 18,
which is shown in Fig. 19. The substantial spreading of the
An examination of Figs. 16 and 17 indicates that the or-four main spectral peaks is a direct result of the nonunifor-
dering of the TW convection pattern is marked by a strikingmity of the pattern.
change in the topological structure of the complex order pa- The net charge also has significance in understanding the
rameter. The disordered pattern has a very high density afvolution of the TW patterns. The convection rolls all have a
phase defects, whereas the order parameter of the orderpdrpendicular attachment to the unforced cell boundary, and
pattern has a smooth phase distribution, with defects occueach of these rolls terminates at a phase defect somewhere in
ring only at domain boundaries. This suggests that the nunthe convection pattern—either at a domain boundary, a dis-
ber of phase defects present in the pattern could be a goddcation, or the edge of a cross-roll patch. Therefore, each
measure of the level of disorder. roll attached to the boundary contributes a net charge of
We note that some care must be taken before identifying- 1, depending on whether it is moving clockwise or coun-
disorder with these phase defects. Most of the phase defedisrclockwise around the cell boundar§fhis may be con-

B. Phase defects as a measure of disorder
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FIG. 19. The spatial Fourier transform of the cross-roll pattern
shown in Fig. 18, where black indicates maximum spectral power. FIG. 20. The phase of the complex amplitude at several stages
of the evolution of the pattern depicted in Fig. 2. The elapsed time
firmed by examination of Fig. 1pRolls for which both ends since the initiation of convection is given for each of the four im-
are within the pattern have defects with opposite charge ages.
either end and contribute no net charge. The wavelength of

the pattern is quite rigid in this system, and there is room follead directly to the highly ordered convection pattern ob-
72 rolls around the boundary of the convection cell. Theseryed at long times, but seems to stall with several hundred
maximum net charge occurs when all of the rolls are movingefects remaining. The ordering is arrested because cross-roll
in the same direction around the cell boundary, giving apatches continue to be sustained in the center of the pattern
charge of=72, where the sign depends on the direction ofpy the collision of traveling-waves and because the sources,
rotation. The net topological charge of the pattern is therewhich appear on the boundary, are not stable. The pattern
fore an indicator of the global rotation of the pattern. shown in Figs. 2() and 22a) is recorded immediately after
We may now use the net charge and the total number ofjs initial ordering has occurred. This pattern contains a to-

defects to characterize the ordering of the TW convectioRa| of 553 defects and a net charge 6fL9, exhibiting a
patterns. Figures 20 and 21 show the complex order param-

eter and associated phase contours at four times during the

coarsening of the pattern, and Fig. 22 shows the identifica ——
tion of phase defects from the corresponding panels in Fig = S \,\\:‘
20, in which positive and negative defects of unit charge are = " ’ - - — ‘ =
indicated by closed and open circles, respectively. The posi | 2 g \ X
tions of the defects during the previous728re shaded, in-
dicating their trajectories. In Fig. 23, the number of defects
and the net charge are plotted as a function of time for twao
runs during the coarsening of the patterns. The black curve
are calculated from the pattern shown pictured in Figs. 16,
20, and 22, and the gray curves are calculated for another ru
conducted under nominally identical experimental condi-
tions.

Figure 23 shows that the patterns initially have a large
number of defects, with a net charge that is near zero. This
indicates a substantial coverage by the disordered cross-rao
pattern and no discernible global rotation. The pattern showr
in Fig. 16a) is in this stage of development. Within the first
1007, there is a rapid ordering of the pattern, characterizec
by a decrease in the total number of defects, but no signifi-
cant change in the net charge. In this stage traveling waves
either moving along the boundary or radiating from sources
on the boundary, encroach on the disorder in the center of FIG. 21. Contours of R&)=0 and Im@)=0 are marked by
the pattern, causing a decrease in the area occupied by th&ck and gray lines for the patterns shown in the four panels of Fig.
cross-roll pattern. This initial ordering of the pattern does not20.

7
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number of defects remains high, signaling that the patterns
are developing a sense of rotation, while remaining largely
disordered. The pattern shown in Figs.(l20and 22Zb) is
recorded near the end of this period of persistent disorder,
and has 321 defects with a net charge-at7. Examination

of the rolls near the boundary of the pattern in Fig(l20
reveals that about two-thirds of the rolls are moving in the
clockwise direction, indicating that clockwise rotation is be-
ginning to dominate. In Fig. ZB) negative defectgopen
circles can be seen entering the pattern from the cell bound-
ary, particularly in the dislocations originating on the right
side of the cell and in the small, poorly formed zipper bound-

" ve
5@ \\ ary which is moving in from the far left.
: \\’\},\,\\ The pattern continues to accumulate net charge and, at

time 800r, it reaches the limiting value of 72, indicating

X /{1/ [, that the globally rotating pattern has fully formed. This is

\ il %%/ immediately followed by an almost total collapse of the
é i number of defects in the pattern. Figs(®0and 22c) show

=== the pattern shortly after this transition has occurred. At this

point, the pattern has 156 defects and a net charge .
From this time onward, the number of defects is remarkably
stable, with a net charge remaining-aZ1+1 and with the

FIG. 22. Defect identification for the four panels of Fig 20.
Positive(negative defects are marked by closéabpen circles and
the positions of positivénegative defects over the previous 23
are shaded in lightdark) gray.

total number of defects varying between 100 and 150. Fig-
ures 2@d) and 22d) show a particularly well-ordered pattern
from this final stage of the coarsening process.

Although the nature of the patterns depends sensitively on
substantial coverage by the cross-roll patches, but no signifthe Rayleigh number, the ordering process seems to be es-
cant rotation. This is apparently the highest level of ordersentially the same over a broad range of Rayleigh numbers
that can be achieved in a nonrotating pattern. nearrg, where perpendicular or zipper domain boundaries

Returning to Fig. 23, the net charge steadily accumulatepredominatd 32]. The ordering of the pattern begins imme-
during the period from 100to about 50@, while the total diately, but stalls with 300—500 defects remaining, while the
net charge of the pattern steadily accumulates. When the
limiting net charge oft 72 is reached, there is a rapid de-

] crease in the number of defects, suggesting that the ordering
| mechanism is facilitated by the state of global rotation. At
higher values of the Rayleigh numbgrearer tor*) the do-
main boundaries contained in the patterns become pinned,
and the patterns are a composite of traveling and stationary
rolls. In this regime, the pattern dynamics are qualitatively
different, and the analysis techniques described here, which
depend on the oscillatory nature of the pattern, cannot be
used.

The process by which the pattern orders itself is also criti-
cally dependent on the boundary conditions at the sidewall of
the convection cell. Because of its physical construction, the
sidewall of the convection cell is thermally neutid2],
which causes the convection rolls to be oriented perpendicu-
lar to this boundary. Also, because the radius of curvature of
the circular cell boundary is much larger than the roll wave-
length, sources on the cell bounddwall foci) are unstable.
The globally rotating patterns are consistent with these two
conditions, since they allow for the perpendicular orientation
of the rolls and do not require sources on the boundary. A
mixed rotation pattern, with domains of rolls moving in dif-
ferent directions around the cell boundary, implies the pres-

FIG. 23. Statistics of phase defects as a function of time for twoence of sources and sinks at the boundary, which are not
convection patterns created under identical experimental conditionfound to be stable and break down into disordered structures.
The black curve is the same run shown in Figs. 16, 20, and 22. Th&he fact that sources on the boundary are unstable has a
dashed line inb) represents the minimum level ef 72 defects. profound influence on the development of the patterns. Our
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600

total defects

400

200

0 1000
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(a) g (b)

©) g (d)

FIG. 25. Frequency field calculated from the pattern shown in
Fig. 20(c). Phase defects of positieegative charge are marked
with black (white) dots. The frequency is in units of the vertical
diffusion time and is mapped to grayscale according to the legend.

FIG. 24. Schematic representation of the vertical component ofiOn U(r) goes to zero at=0, where the phase is undefined.
the velocity field 6,) for a defect at the origin{=y=0). The dot At t=0, U, is positive for positivex>0 and negative for
represents upflow, the cross represents downflow and the gray af-<0, and the connection of the flow lines above and below
row indicates the direction of the vorticity at timéa) /4w, (b)  the midplane of the fluid layer imply vorticity in the negative
72w, () 37/4w, and(d) 7/ w. The vorticity precesses at the tem- Y direction. At timet= /4w, the flow field has rotated, so
poral oscillation frequencyey. that u, is positive fory>0 and negative foy<O and the

vorticity is alongx. In general, the vorticity at the phase
experiments in a rectangular convection ¢albt shown in-  defect core rotates in the horizontal plane at frequancy
dicate that a stable source can form in a corner of the cell. In The existence of traveling waves in binary fluid convec-
this case, the source launches stable waves into the pattetign depends sensitively on the development of a phase shift

which leads to a rapid orderingithout global rotation. between the temperature and concentration fields, which has
been shown to occur in simulations of two-dimensional TW
C. Physical significance of the phase defects convection[28]. This breaking of symmetry has also been

. . . . o , observed in quasi-two-dimensional convective flows in re-
An important issue is what physical significance, if any, stricted geometrieg45,46. Presumably, a similar flow

can be attributed to the phase defects in the TW patterns. Ip, 4 develop in the I,arge domains of ,traveling waves in
many contexts, the topologically charged phase defects sudflerns studied here. As described above, phase defects cor-
as those described here are called vortis This is an  oqh0nd to points in the pattern where the flow is very com-
appropriate interpretation in cases where the gradient of thgjicateq, and it is plausible that this could interfere with the
order parameter is a current, so that the phase defects aigjicate interaction of temperature and concentration in the
associated with current loops. An example of such a case iy giate.
the Ginzburg-Landau theory of superconductivity, where the  1141e is experimental evidence that TW convection is
gradient of the order parameter is the supercurrent, and the,jified in the neighborhood of the phase defects. In Fig.
current loop associated with the phase defect confines a tu%’ the temporal oscillation frequency is shown as a function

of magnetic flux. of position for a pattern containing large domains of travel-

_In the experiment described here, the shadowgraph Visyp ' \yaves, as well as some concentrations of defects. This
alization system is sensitive to fluctuations in the fluid den;{j

. hich losel lated with th requency field was calculated using an algorithm we have
sity, which are closely correlated with the temperature angyeqeriped elsewherf82]. A significant suppression of the

with the vertical component of the fluid velocity near the ,qgjiation frequency is observed in the vicinity of the phase
midplane of the convection cell. Since the order parameter ISefects Figure 26 is a histogram of the frequency data
associated with the vertical component of the fluid velocity,qqin .in Fig. 25. It is clear from this histogram that the
the phase dthef?t.:js notfdlrecrt]ly azsocu;te;i with dt_he Vert'ﬁ scillation frequency and therefore the phase velocity is sig-
vorticity in the fluid. In fact, the phase defect indicates thepisicanty lower near the defects than in regions of pure trav-
presence of horizontal vorticity that precesses about the ve sling waves. This suppression of the frequency is consistent

t!ca: axis, as iIIust][aLed inl Fi_g. 2.4' fNehar fthe defect, the veryi'a decrease in the effective separation ratio in the vicin-
tical component of the velocity is of the form ity of the phase defects.

uz(x,y,t) =Reu(r)e' "], (22) V1. INTERACTION OF DEFECTS

wherer is the distance from the defect core afids the In Sec. V, it was shown that the phase defects are an
polar angle in the standard cylindrical coordinates. The funceffective measure of disorder in the TW convection patterns.
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FIG. 26. Histogram of the frequency field shown in Fig. 25.
indicates the frequency close to the phase defectsBamdlicates
the frequency far from the phase defects.

It is possible to go one step further and ask if the dynamics
of the defects and particularly their interaction with each

other, are significant in determining the development of the
pattern. The most basic way to address this question is to
measure the defect-defect correlation functions. FIG. 27. Like-sign defect-defect correlation functiddy,) for a

In order to measure these correlations, the complex ordefisordered TW convection pattern.
parameter is first calculated as a function of time and space
for a high-resolution video sequence, such as the one shown |, ihe like-sign correlation functiorC,,, shown in Fig.

in Fig. 17. For each frame, a list is compiled of the chargey7 there are four large peaks arising from the nearest like-

and position of ee_lch defect. The correlation functions ar&ign neighbors, as well as smaller peaks arising from more

then calculated using the formulas distant neighbors. In the unlike-sign correlation function,
Cpn, shown in Fig. 28, there are again four peaks corre-

c _iE s s s sponding to nearest neighbors.

PPN, itz X=X =X) Y =Ym=Y) “Cn = Cpy), The radial distributions of the correlation functions are

(22)  plotted in Fig. 29. Both functions approach the same

1 asymptotic value at large separations, but are dramatically

- different at small separations. The distributio exhib-
Con ann;n 2000 05y O its peaks aty2h and at 2, indicating a '[ender,?r?i:%{iJ for like-

where C,(x,y) is the correlation between defects of like
sign, andC,(x,y) is the correlation between defects of un-
like sign. In these formulas, the summations are over all
pairs of defects in a given framex/{,y,) are the integer
coordinates and, is the charge of the'" defect. The sym-
bol & is defined to be one wham=0 and zero otherwise.
The correlations are normalized to the number of defects ani
indicate the probability that a defect has a neighbor of the
specified sign at a given displacement. The correlation func:
tions are calculated averaging over as many frames as ne:
essary to obtain adequate statistics.

The like- and unlike-sign correlation function€(, and
Cpn), calculated for a disordered convection pattern, are
shown in Figs. 27 and 28, respectively. The data are aver
aged over approximately 3@Cand are calculated from de-
fects in the central region of the convection pattern, so thai
the cell boundary is not an important influence on the motion
of the defects. Most of the defects in the pattern appear in al
extended cross-roll patch, so that the correlation function
mainly reflects the periodicity of the lattice of defects in the
cross-roll pattern(see Fig. 13 Since the ordering of the
pattern is closely related to the instability of the cross-roll
pattern, these correlation functions may give some insight FIG. 28. Unlike-sign defect-defect correlation functiof )
into the ordering mechanism. for a disordered TW convection pattern.
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FIG. 29. The radial distribution of the defect-defect correlation
function. The dashed line indicates like-sign correlati@y ), and
the solid line indicates unlike-sign correlatio@ ;).

separation (units of h)

FIG. 30. The radial distribution of the conditional defect-defect
gprrelation function(from which defects within cross-roll patches

sign defect pairs to maintain these separations. The moare excludeflas described in the text. The dashed line indicates the

s!gnlflcant aspect dtpp is the faCF that lt.goes to zero as th? like-sign correlation Cp), and the solid line indicates the unlike-
displacement approaches zero, indicating that defects of lik .
. . . sign correlation Cp,).

sign never approach each other, so that there is an effective
hard-core repulsion among defects of like sign. The distribu- At I i the like-si lation functi
tion of C,, has peaks ah and J5h. The distribution of inslgi]a 35?22;%'&2’3 th?at éfel;?lgggccr)irsrﬁ]a :‘cr)gm L;n\(;allon
Cpn has a finite value at zero displacement, suggesting thafppzero gt Zero separation. 1o a r?mlaxir'num %ear e araL:'?)n
there is no repulsion between defects of opposite sign al P ' paral

short range, but that the defects tend to sit at a finite separa/—ih' _alth_ough the smaller peaks at Iarggr se.paration are &.lb'
tion. sent in Fig. 30. In the ordered pattern, like-sign defects still

The defect-defect interactions implied by the measure(thibit hard_—core repulsion and the tgndency to sit at spacing
defect correlation functions can be related to some of th&f V2h, which was found for the disordered patterns, and
basic features of the disordered convection patterns. Thi'ES€ appear to be intrinsic properties of the phase defects.
ability of unlike-sign defects to approach each other allows__However, the unlike-sign correlation functi@,, in Fig.
annihilation to occur and facilitates the ordering of the pat-30 iS very different from that shown in Fig. 29. In Fig. 30,
terns. The inability of like-sign defects to approach eachCpn Nas a shallow dip at separations néarand rises to a
other prevents the formation of multiply charged defectMaximum for zero s_eparatlon, exhibiting no peak; at finite
structures, such as multiarmed spirals. separation. The dip nG:Pn at small nonzero separation sug-

It is important to determine the extent to which the corre-9€sts that defects which come within range are drawn to-
lation functions measured in the disordered patterns are irff€ther and annihilate. This is consistent with the observed
trinsic properties of the phase defects, rather than merely @otmn of the defe_cts in the ord_ered patterns. The Iargg peaks
reflection of the periodic nature of the cross-roll pattern. Ond" Cpn Observed in Fig. 29which suggest that oppositely
way to address this question is to see if the correlation funccharged defects could form bound paiase apparently spe-
tions measured in the disordered patterns are consistent wifific to the cross-roll pattern, and are not applicable to de-
the behavior of the defects in the ordered patterns. fects in isolation.

Figure 30 shows defect-defect correlation functions com-
piled from a p_eriod of 358 during the evolution qf an or- VIl. CONCLUSION
dered convection pattern, such as those shown in Figs. 2
and 2@d). During the video sequence, the pattern consists In this paper we considered the coarsening of a traveling-
mainly of large domains of traveling waves separated bywave convection pattern, that is to say, the transition from a
nominally perpendicular domain boundaries, along withdisordered pattern to a ordered one. This transition is not
small, transient cross-roll patches. Even though the cross-rotharked by a dramatic change in the spatial Fourier spectrum
pattern fills a relatively small area of the pattern, it containsor the spatial autocorrelation function of the patterns. Both
a high density of defects, and tends to dominate the defectrdered and disordered patterns are comprised of a continu-
defect correlations, even in the ordered patterns. In an apus spectrum of wave vectors, which spans all directions, but
tempt to measure the “bare” defect interactions, a condi-a narrow range ofk|. In the disordered patterns, the wave
tional probability distribution was calculated, in which components with differing directions overlap, whereas, in the
defects are excluded if they have six or more neighborordered pattern, they are segregated into individual domains
within a radius of &. This condition excludes defects in of traveling waves. The ordering of the patterns does not, as
cross-roll patches, for which 12 neighbors are expected, buine might have expected, consist of a dramatic sharpening of
includes defects in domain boundaries, dislocation, or irthe wave number spectrum, or increase of long-range order,
small ensembles of defects. Comparison of the correlatioas measured by linear correlations or mutual information. In
functions in Figs. 29 and 30 helps to distinguish betweerthe frequency domain, the ordering of the pattern apparently
bare defect interactions and the ensemble interactions whiatorresponds to the formation of complicated phase relation-
occur in the cross-roll pattern. ships among the Fourier components.
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The most important results of this study are twofold: we The latter part of this paper begins to address this issue.
can extract the complex order parameter from experimentdfigure 22 illustrates the relationship between the defects and
TW patterns, and the coarsening of the patterns is associatélde wave field, with defects remaining stationary within the
with a dramatic change in the topological structure of thisalternating cross-roll patches, slowly drifting in domain
order parameter. The disordered patterns contain a lardsoundaries, and being swept along with the waves in dislo-
number of singularities in the phase of the order parameteations. The correlation functions shown in Figs. 27 and 28
with phase defects of positive and negative topologicabddress the interaction of the defects with each other, and
charge occurring in roughly equal numbers. As the patternsuggest that there may be an effective defect-defect interac-
coarsen and domains of traveling waves suppress the supéien potential which exerts a strong influence on the devel-
positions of wave components, pairs of oppositely chargedpment of the patterns. While the calculation of the defect
defects annihilate, leaving behind a much smoother phaseorrelation functions is only the crudest measure of defect-
field. The defects which remain form linear arrays of like- defect interactions, the ability to track the trajectories of
sign defects, which correspond to boundaries between dghase defects in this system leaves open the possibility of
mains of traveling waves. At the same time, a buildup of netdoing more in-depth studies of the defect dynamics.
charge occurs due to a charge imbalance between defects Finally, to take a more general view, complex amplitude
entering and leaving the pattern at the system boundary. THeelds containing phase singularities are used to describe a
accumulation of this net charge corresponds to the developrariety of physical systems. In the Ginzburg-Landau theory
ment of global rotation in the pattern. We conclude that theof superconductivity, flux vortices are described using an
total number and net charge of the population of defects ar@entical formalism, and the lattice of defects in a alternating
very direct measures of the level of disorder in the system.cross-roll pattern makes an interesting comparison with the

Another important question is whether it is possible toAbrikosov flux lattice. Similar vortex structures were also
elevate the phase defects from their role as mere indicators studied in superfluid helium, in optical resonators
the pattern dynamics to a role déterminingthe dynamics [6,7,14,47,48 and in reaction-diffusion systen{€l9]. The
of the patterns. In spatially extended dissipative systems, theaveling-wave convection system studied here is particularly
organization of a pattern is often associated with the formaattractive because in this system it is possible to directly
tion of coherent structures. In an idealized, homogeneoumeasure the dynamics of the complex order parameter in an
Rayleigh-B@ard convection pattern, the convection rolls experiment containing a large number of phase defects.
themselves are the primary coherent structures. In the very
complicated convection patterns studied in this paper, it is ACKNOWLEDGMENTS
possible that the defects in the pattern might be regarded as
the central “coherent structures” in the system, and that the We would like to acknowledge useful discussions with M.
development of the pattern can be interpreted as resulting. Cross, H. Greenside, T. Hwa, D. Ridgway, and H. Riecke.
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